CoMmpUTER ART
ANd ANiMATION

for The TRS-80

David L. Heiserman

F l ' ' ~HAL l l 4(: I Vﬁlf\\/ d [ll s, New Jer O 6
00 C y J SEY 7 }2

-
~~~~~
e

.....
.....

.....
.....
.....
.....
ooooo
.....
.....
.....
°°°°°
00 @
.....
-----
.....
.....
.....
.....
.....

.....
.....
.....

.
.....
.....

-----
.....
.....
-----
.....



Library of Congress Cataloging in Publication Data

Heiserman, David L., {date)
Computer art and animation for the TRS-80.

(Prentice-Hall series in personal computing)
Includes index.
1. Computer graphics. 2. Computer art.
3. Computer animation. 4. TRS5-80 (Computer}—
Programming. [. Title. Il. Series.
T385.H44 1982 001.55'3 82-16592
1SBN 0-13-164749-0
ISBN 0-13-164731-8 (pbk.}

Editorial/Production Supervision
and Interior Design: Lynn S. Frankel
Cover Design: Photo Plus Art
Manufacturing Buyer: Gordon Osbourne

© 1983 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

ISBN 0-13-1k4749-0 {CASEZ}
ISBN 0-13-1k4731-84 {PAPERZ

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand



CONTENTS

CHAPTER 1
SETTING THE STAGE

The Required Equipment

Programming Prerequisites

A Word About Low-resolution Graphics
How to Use This Book

CHAPTER 2
THE TRS-80 GRAPHIC CHARACTERS

Character Spaces
The TRS-80 Graphics Set

The Meaning of the Graphics
and Their Code Numbers 11

Complementing the Codes,
or Reversing Blacks and Whites 14

The Alphanumeric Character Set

WwrnoihoN

14



iv Contents

CHAPTER 3

SELECTING CHARACTERS AND GETTING THEM

ONTO THE SCREEN

The TRS-80 Video Display Worksheet
Positioning Characters
with the PRINT @ Statement

Printing the Special Graphics 20

Avoiding the Scrolling Effect 21
Positioning Characters with POKE Statements

Plotting the Special Graphics

with POKE Statements 23

Plotting Keyboard Characters

with POKE Statements 23

Avoiding the Scrolling Effect and Printover 24

CHAPTER 4
COMPOSING SINGLE, STATIC FIGURES

Starting with the Video Worksheet
Using a PRINT @ Statement for each Character
Taking Advantage of Automatic Cursor Movement
Compressing the Program Further

with the STRINGS$ Function
Carrying the Graphic Codes as DATA Elements
Blank-Space Code Compression

CHAPTER 5
SOME COMPOSITION TECHNIQUES

Relocatable Static Figures
Making Multiple Copies of the Same Image
Creating Multiple-lmage Compositions

17

17

19

22

25

26
27
28

29
33
37

39

40
42
43



CHAPTER 6
STRING-PACKING PROCEDURES

Character Codes and String Variables
String Packing a Single Static Image

The Initialization Routine 56

The Control Routine 57

The Drawing Subroutines 57

The String-Packing Subroutine 58
DATA Listings 58

Duplicating a String-Packed Figure
Creating String-Packed Compositions

CHAPTER 7
MORE ABOUT STRING PACKING

The Importance of the Control Section
Multiple-lmage Sequences
Packing with STRINGS$ Functions
String-Packing Combinations

of CHR$ and STRING$ Functions

CHAPTER 8
CUSTOMIZED CHARACTER SETS

A Character Set for Card Games
A Double-Sized Alphanumeric Set

Converting to White-on-Black 98

Selecting Black or White Characters 101

A Large-Character Typing Routine 103
A Russian Character Set

51

52
54

58
60

65

65
69
72

79

85

86
92

106



Vi Contents

CHAPTER 9
A FIRST LOOK AT TRS-80 ANIMATION

An Introductory Application
of Limited-Segment Framing
Organizing and Editing Animation Sequences

CHAPTER 10
COMPLEX-FIGURE ANIMATION

Animating Large, Complex Figures
Taking Advantage of Control Codes 146
An Example: COUNTRY GAL 148

Synchronous Animation
of Two or More Figures

Asynchronous Animation
of Two or More Figures

CHAPTER 11

MOVING FIGURES FROM PLACE TO PLACE

Moving Singie-Character Figures
Vertical Motion 176
Horizontal Motion 181
Summary of Single-Character Motion 184

Moving Multiple-Character Figures
Moving Animated Figures

CHAPTER 12

KEYBOARD CONTROL AND CONTACT SENSING

Keyboard Control
Sensing Contact Between Figures

111

112

123

145

146

158

166

173

174

184
190

197

198
204



Contents

Single-Point Contact 205

Horizontal-Line Contact 207

Vertical-Line Contact 208

Rectangular-Field Contact 210

Contacts Between Multiple-Character Figures 211

Summary of Contact-Sensing Expressions 212
An Example: A Missile Shoot Game

The String-Packed Figures 214

The Program Variables 214

Initializing the Play 215

Multiplexing Phases for the Launcher
and Missile 215

Multiplexing Phases for the Flying Saucer 217

CHAPTER 13
PERSPECTIVE ANIMATION

Near-Center Perspective Animation
Off-Center Perspective Animation

APPENDIX A
TRS-80 GRAPHICS SET

APPENDIX B
TRS-80 ALPHANUMERIC CHARACTER SET

APPENDIX C
TRS-80 CURSOR CONTROL CODES

INDEX

vii

212

219

222
232

245






Preface

Computer graphics plays a vital role in the successful application of home
computer systems. Complex ideas are often better expressed in terms of
animated graphics sequences, columns of dull data can be more mean-
ingful when backed up with graphs or moving images, and, of course, com-
puter games can be far more exciting when they are built around graphic
razzle-dazzle.

The literature usually supplied with a home computer system, how-
ever, rarely reflects the full potential of its graphics system. The subject is
often treated as a novelty to be exploited only by those who care to spend
the time figuring things out for themselves.

This book treats TRS-80 computer graphics and animation as a
topic worthy of considerable study and experimentation. The discussions
and examples should help a programmer develop a sense of confidence in
developing programs that employ some graphics features. The programs
may be almost wholly graphic, serving as art for its own sake, or they may



X Preface

serve as a small part of a larger program that has a more practical pur-

pose.
Whatever one’s motivation might be, the study of computer

graphics and animation can reap highly satisfying rewards. It’s a matter
of giving it the serious attention it requires. This book is a step in that

direction.

DAVID L. HEISERMAN



Serming THE STAGE g

If your concept of computer art is limited to doodling complicated
mathematical functions on a CRT, your understanding of the matter is
about 20 years behind the times. Computer art, or graphics, is now a
legitimate branch of computer science, and it certainly hasn’t gained that
stature by limiting itself to plotting purely abstract figures that a child
can create with a simple drawing toy.

If you think it takes a great deal of expensive, special equipment to
create computer animated sequences, you are in for a pleasant surprise.
Cost and sophistication are relative terms, of course; assuming you
already own a home computer system, the additional cost is just about nil,
and there is no need for building or buying any additional equipment.

That is not to say that it is easy to produce satisfying computer art
and animations. It is hard work, and it requires some learning and
discipline. The purpose of this book is to point you toward the techniques
that are most likely to produce the results you want. It is up to you to sup-
ply the creativity and hard work.



THE REQUIRED EQUIPMENT

All of the discussions and examples cited in this book are oriented toward
16k, TRS-80 home computer systems; either the Model 1 with Level II
BASIC, or the Model 3. It is assumed you will be using a cassette tape
system for saving programs, although a disk-based TRS-80 system
works equally well.

Aside from the standard drawing tools—pencils, a drawing compass,
protractor, and a good supply of erasers— the only auxiliary materials of
special importance are some clean cassette tapes and a couple of pads of
Video Programming Worksheets (Radio Shack catalog number 28-2105).

PROGRAMMING PREREQUISITES

All of the discussions are based on the BASIC programming language. A
knowledge of BASIC is absolutely essential for getting any real benefit
from the work presented here.

The graphics techniques featured throughout the book are slanted
toward the application of string variables, dimensioned arrays, and
DATA listings. If you happen to be weak in your understanding of any of
those families of BASIC statements (as many home computer program-
mers are), you should take some time to polish your understanding as you
work into the first few chapters.

A WORD ABOUT LOW-RESOLUTION GRAPHICS

The TRS-80’s graphics system is usually classified as a low-resolution
system. It is virtually impossible, for instance, to draw a circle that
doesn’t have some geometric distortion and a rough, step-like appearance
in most places. Therefore, unless the desired figure happens to be a rec-
tangle that is situated so that its sides are parallel to the edges of the CRT
screen, one has to settle for something less than a perfect rendition of a
desired image. However, that ought to be taken as challenge rather than a
point of discouragement.

The human brain is a marvelous perceptive organ, but it can be
tricked. It is possible to fool the brain into thinking it is seeing something
that isn’t there; in the context of producing satisfying low-resolution pic-
tures, that means it is possible to fool the brain into ignoring imperfec-
tions. With creative application of low-resolution graphics, a viewer can
perceive the real essence of a figure or animation sequence without being
bothered by geometric distortions that are inevitably present in it.

Viewed objectively, a TRS-80 image of a girl standing in the middle



Setting the Stage 3

of the screen can look terrible. The figure is necessarily made up of sharp
right angles, relatively large rectangles of black and white, with none of
the smooth curves a traditional artist would like to use. However, if you
take time and care in preparing the figure, if you take the trouble to in-
troduce some novel and interesting elements, the brain will attempt to in-
terpret the image as something rather nice and meaningful. It will at-
tempt to view the image as the artist intended, reaching for the essence of
the image rather than dwelling on its objective appearance. Furthermore,
the effect is enhanced when the image is animated in real time.

Along the same lines, the TRS-80 systems featured here are limited
to black and white drawings. There are no shades of gray. That, too, poses
no problem when one consciously introduces strokes of black and white
that merely represent shades of gray. So what if the shadow cast by a
figure is white instead of black or gray? The visual impression—especially
if animated —can still be quite effective. It is a matter of taking the trouble
to try it.

HOW TO USE THIS BOOK

Take the book one step at a time. A number of special graphics techniques
are developed over a number of chapters; attempting to jump into the
middle of the book without studying the preceding material is courting
disaster. So start from the beginning and move along as rapidly as you
wish, making sure you are grasping the essence of the material as you go
along.

There are a good many specific programming examples suggested
through these chapters. They are intended to be just that—examples.
This is not a collection of finished programs that stand on their own
merits. It is up to you to develop such programs yourself. Try the ex-
amples in order to convince yourself that the topic at hand really fulfills
its purpose. Study the programs themselves to make sure you understand
exactly how they work and what the function of every statement is. I hope
you will find some of the specific program listings interesting and even a
little amusing, but you will be selling yourself short if you make no at-
tempt to generate programs of your own as you go through the book.






The TRS-80

Graphic CHaracTEeRs

The graphic characters available on the TRS-80 are the elementary com-
ponents of any image that can be drawn on the CRT screen. No picture can
be created without them, so a discussion of those characters is a logical
starting point for any presentation of TRS-80 graphics and animation.

An imaginative, creative selection of graphic elements goes a long
way toward creating satisfying images on the screen. Anything less than
a thorough appreciation of all those characters—exactly how they look
and how to get them onto the screen—is bound to diminish the quality of
the final works.

Even if you have worked with the TRS-80 graphic characters before,
you will do well to study this chapter because it goes into a finer level of
detail than does most of the standard literature on the subject. It is this
eye for detail that promises to open new horizons for graphic achievement.

This chapter is not concerned with putting the graphic characters in-
to a desired place on the screen, nor with stringing characters to create
larger and more complex figures. That begins in Chapter 3. For now, use

5



6 CHAPTER 2

the programs merely to view the characters they place onto the screen.
It’s not necessary yet to figure out how the programs work. You will have
an abundance of program analysis later on.

CHARACTER SPACES

For our immediate purposes, the TRS-80’s graphics are divided into two
categories: the alphanumeric characters, including punctuation marks
and special symbols, and the unique TRS-80 graphic elements. There are
64 of each kind, and in this chapter you will get to know all 128 of them
rather well.

The CRT screen has a rectangular graphics field. That is the working
space for all the characters, leaving a black border around the edges where
nothing can be printed. That character field is divided into 1024 separate
character locations, on each horizontal line of text or graphics, and 16
lines running from top to bottom of the field. Any character, alpha-
numeric or special graphic, has to fit into one of those character locations
in the field. There are no in-between places.

Each of those 1024 character locations is further divided into 6
smaller segments called pixels. As indicated in Fig. 2-1, the pixels are ar-
ranged in a 2 x 3 format.

The smallest graphic that can be plotted is one that fills out just one
pixel. Some of the keyboard punctuation marks (comma, period, and
apostrophe, for instance) fill only a portion of one pixel, but they cannot be
drawn without excluding any other graphics from the rest of that
character space. Since the pixels are the elementary building blocks for
screen graphics, they are worthy of closer study.

Obviously the pixels are not square. Using simple eyeball reckoning,
and perhaps a natural desire to make things as simple as possible, one
might assume that each pixel is about twice as tall as it is wide. But that is
not the case. The relative dimensions of each pixel is actually 1 x 7: it is
23 times taller than wide.

An important implication of the rectangular pixel shape is that lines
drawn vertically can be much narrower than those drawn horizontally.
Horizontal resolution, in other words, is far better than vertical resolu-
tion. If you have played with some SET and RESET graphics, you have
doubtless noticed that fact. It is something that TRS-80 graphics artists
must contend with constantly.

So each pixel in a graphic character space has relative dimensions of
1 X 7. Since the pixels are arranged in a 2 x 3 pattern within each
character space, it follows that the relative dimensions of each character
space are 2 X 7. A character space is thus 3/: times taller than it is wide.
When it comes to printing graphics from the alphanumeric character



NOTE: Dimensions are
relative —
i unit =the width of
7 one pixel

FIGURE 2-1 A TRS-80 character space showing the relative dimensions
of that space and its pixels

generator, each character will dominate a 2 X 7 space in the field. The
space in that case will always be black and the character itself will be
white. No other graphic can be slipped into that same space as long as the
character is there.

Finally, since there are 64 character spaces in each field line and 16
lines in the field, the relative dimensions of the field is 8 x 7. The field is
slightly wider than it is tall.

No doubt matters would be much simpler if everything were
square—pixels, character spaces, and the field. Things aren’t that simple,

7



8 CHAPTER 2

however, and if we are to set the stage for a complete acquaintance with
this system of graphics, even details such as the relative dimensions of the
basic elements can be important.

Incidentally, your CRT might suffer from some astigmatic distor-
tion. The symptom of this malady is a change in character-space dimen-
sions from one place on the screen to another. Astigmatic distortion is
generally too slight to be of any concern, but if it ever grows to distressing
proportions, your local Radio Shack computer dealer ought to be able to
fix it for you.

THE TRS-80 GRAPHICS SET

The TRS-80 system has an unique, built-in graphics generator. It allows
you to specify any one of 64 possible graphic characters in terms of a
special number that is assigned to each of them. In fact, the only way to
get them printed onto the screen is by calling them out by their assigned
numbers; there are no keys on the keyboard assembly for directly typing
them onto the screen.

Figure 2-2 shows the pixel arrangement in a single character space.
It is the same arrangement illustrated in Fig. 2-1, but this time I have in-
cluded some numbers in each pixel space.

When you call up one of the special TRS-80 graphics, it either will fill
each pixel with a spot of light or will clear it to black. Since there are 6
pixels and each can be either black or white, it figures that there are 64
possible combinations. For example, all pixels can be black. That’s one
possibility. Then pixel number 0 could be white, and the rest can be black.
That is possibility number 2. Or, for possibility number 3, pixel number 1
can be white and the rest black. Or pixels 0 and 1 can be white and the rest

FIGURE 2-2 The six pixels in a
4 5 character space; the numerals indi-
cate the place values for determining
the graphic character code number




The TRS-80 Graphic Characters 9

black. On and on it goes, up to 64 possible combinations of black and white
pixels in that one character space.

All of the possible graphics combinations are shown in Fig. 2-3.
Count them, if you wish. There are 64 of them.

The number shown below each graphic is the number one has to call
in order to print it onto the screen, An all-black graphic is called by
number 128, and an all-white graphic is called by 191. The other combina-
tions use the integer values between those two.

If you aren't already aware of the fact, you should know that pictures
are assembled by calling out appropriate combinations of these graphics
numbers. The information in Fig. 2-3 can be quite valuable, and you will
probably refer to it any number of times.

In order to make it easier for you to find this information at a later
time, the figures are duplicated in the Appendices.

If you would like to take a look at the graphics on your own com-
puter, consider Projects 2-1 and 2-2.

PROJECT 2-1

Listing 2-1 is a short program that lets you ENTER a decimal graphic
code number, then see the graphic printed in the upper left-hand cor-
ner of the screen. If you ENTER a number outside the range of 128 to
191, the program will give you an error message and an opportunity to
try again.

10 REM %X PROJECT 2-1 XX

15 CLS

20 DEFINT CICLS

30 INPUT "WHAT GRAFHIC CODE NUMEBER (128-191)"3C

40 IF C»=128 AND C<=191 THEN &0

50 PRINTIPRINT "ENTRY ERROR +.+ TRY AGAIN"IGOTO 2¢
60 CLSIPRINT CHR$(C);C

70 PRINTIFRINTIGOTO 30

LISTING 2-1 Programming for Project 2-1

The program runs endlessly, and the best way to get out of it is by strik-
ing the BREAK key.

PROJECT 2-2

Listing 2-2 lets you view the special TRS-80 graphics and their cor-
responding code numbers in a fashion akin to that in Fig. 2-3. The
graphics and their code numbers are printed down the left side of the
screen, six at a time. Striking the ENTER key lets you view the next six
characters and code numbers.



v xipuaddy ut UOISIOA 8] 885 Os|e 'siajoeleyo ojydelb og-gy | |eoads y9eul £-Z 3¥noid

161 06f 68 881 /Bl 981 68l €81 281 18 08F 641

et
O
il
LT

L1l

LHEI |

L

6G1

LTI
e A
et
kb LT

[:_-_!F“_'L



10 REM k% FROJECT 2-2 %X

20 CLBIC=128

30 FOR N=0 TO 6

40 PRINT CHR%(C)iC

50 C=C+1iIF Cr191 THEN PRINTSINFUT S$160TO 20
60 PRINT

70 NEXT N

80 INFUT S$iCLSIGOTO 3¢

LISTING 2-2 Programming for Project 2-2

This program also runs endlessly. Terminate it at any time by striking
the BREAK key.

the meaning of the graphics
and their code numbers

You have seen that the 64 TRS-80 special graphics characters repre-
sent all possible combinations of black and white pixels within a character
space. The code numbers assigned to each of those graphics are not ar-
bitrarily chosen, nor, for that matter, are the patterns of blacks and
whites. \

The graphics characters are generated according to a standard, 6-bit
binary counting sequence. Each of the six pixels represents a binary place
value that is assigned as shown in Fig. 2-2. The pixel in the upper left-
hand corner of the character space has a place value of zero. The one in the
upper right-hand corner has a place value of 1. The place-value numbering
continues in that left-to-right and top-to-bottom fashion until the pixel in
the lower right-hand corner, which has a place value of 5.

Keeping that in mind, also consider that a white pixel is
numeric value of 1 when it is white, and a numeric value o
black.

Now, each pixel has a certain place value assigned to it. That value
never changes. Each pixel also has assigned to it a numeric value, Oor 1,
depending on whether that pixel is to be white or black.

To determine the character code for each graphic, work through the
following procedure:

e Step 1: For each of the six pixels:
A. Find 2°, where p is the place value. (The powers-of-2 shown
in Table 2-1 can be helpful here.)
B. Multiply the result by the numeric value of that pixel (by O
if it is black, by 1 if it is white).
e Step 2: Sum the results for all six pixels as determined by
the operations in Step 1.

11



12 CHAPTER 2

* Step 3: Add 128 to the result of Step 2. That number will be
that particular graphic’s code number.

Try out the procedure on a specific graphic; say number 156.

* Step 1: For pixel 0—0.2°=0
For pixel 1—0.21 =0
For pixel 2—0.22= 4
For pixel 3—1.23 =8
For pixel 4—1.24= 16
For pixel 5—0.25 = 0

® Step2: 0+0+4+8+16=28

* Step 3: 128 + 28 = 156

Sure enough, the procedure works. There is a definite mathematical rela-
tionship between the configuration of each graphic and its assigned code
number. Try it on any other graphic.

If you are already familiar with the process of converting 6-bit binary
numbers (combinations of 1s and 0s) into a decimal format, the procedure
should look rather familiar—familiar, because that’s what it is. The only
significant variation on the old binary-to-decimal conversion theme is the
need to add 128 at the end of the procedure.

That is a purely mathematical procedure, and since you have a com-
puter sitting there, and since computers are supposed to be good at doing
mathematical operations, you might as well let it do the figuring for you.

The program for Project 2-3 is really something more than a simple
demonstration program. Later on you will find it to be an invaluable aid
for determining the graphic code numbers for your drawings on the
screen. Using this program certainly is better than having to look up the
graphic code number for the dozens, and perhaps hundreds, of graphic
elements you will be using in a display. In short, the program makes the

TABLE 2-1

POWER-OF-2 VALUES FOR DETERMINING
GRAPHIC CODE NUMBERS

20 =1
2'=2
22 =4
22=8
24 =16
25 = 32




The TRS-80 Graphic Characters 13

summary of graphic figures in Fig. 2-3 obsolete. Now your computer does
all that searching for you.

PROJECT 2-3

The program in Listing 2-3 lets you specify or determine a graphic
code number by simply typing in the 1 or O value for the six pixels in any
desired graphic figure. When you have done that, the computer
displays your original combination of 1s and Os, the graphic code those
combinations represent, and the graphic itself.

10 REM x¥ FROJECT 2-3 XX

20 CLSIC=0

30 PRINT "TYFE THE NUMERIC VALUE FOR EACH FIXEL"
35 PRINT TAB(S)i"(0 FOR BLACKy 1 FOR WHITE)" {PRINT "7%"
40 FOR P=0 TO 5

50 S$=INKEY®IIF S$="" THEN 30

60 S=ABC(S$)-481IF NOT(S=0 QR 8=1) THEN 30

70 S(F)=SIPRINT §ij

80 NEXT P

90 CLSIFOR F=0¢ 10 S

100 PRINT S(P)§

110 C=C+8(FIX2LF

120 NEXT F

130 PRINTIPRINT C+128sCHR$(C+H128)

140 INFUT S4160TC 20

150

160 7

170 “NOTE:? L=UP ARROW

LISTING 2-3 Programming for Project 2-3

When you RUN this program, you first see a prompting message:

TYPE THE NUMERIC VALUE FOR EACH PIXEL
(0 FOR BLACK, 1 FOR WHITE)

Respond by typing the 1s and Os in the desired graphic figure, using the
left-to-right, top-to-bottom sequence described a bit earlier in this
discussion. The keyboard is “‘live” through this process, so you do not
have to strike the ENTER key after typing each digit. In fact, you
shouldn’t strike the ENTER key at all. If you happen to strike the wrong
key, you have to restart the sequence, either by RUNning from the
beginning or by typing in any combination of 1s and Os until the pro-
gram recycles to start another entry process.

After you've typed in the final digit, the program automatically sum-
marizes your entry and shows the correct code number and a picture of



14~ CHAPTER 2

the little graphic. Then, after having a chance to view the results, you
should strike the ENTER key to start with another series of pixel values.

complementing the codes, or reversing blacks
and whites

As the following chapter will describe, you can build pictures from
the elementary graphic characters by stringing the characters together to
compose a larger and more complex figure. It seems more natural to think
in terms of plotting white figures onto a black background than white
onto black and I imagine that is the perspective that was taken by those
who devised the TRS-80 graphics set. However, the visual impression of
many kinds of graphics can be greatly enhanced if that thinking is re-
versed—thinking in terms of black figures being plotted onto a white
background. And of equal importance is the notion that it might be
necessary at times to reverse the black-and-white patterns already com-
posed at some previous time.

Since the pixel patterns in the TRS-80 graphic characters have an
underlying binary configuration, it should be possible to complement the
binary values—exchange all the 1s for 0s and the 0s for 1s—and come up
with a graphic that has the same general configuration but a reversal of
the black and white pixels. Indeed, that can be done.

To see this idea at work, select any TRS-80 graphic from Fig. 2-3
and subtract its code number from 319. Use the numeric result as a new
code number, and look up its graphic. Lo! the two graphic characters are
negatives of one another.

To reverse the blacks and whites for any TRS-80 graphic, sub-
tract the original code number from 319. The result will be the
code number for the reversed black-and-white graphic.

Perhaps this matter of coming up with a black-and-white reversal of
a graphic character is of purely academic significance at this point.
However, by writing the conversion—subtracting code number from
319—into a drawing program, you can see the picture with reversed col-
ors, though the image will retain the same form.

It is unfortunate that this cannot be done with the printable
keyboard characters that are to be described next.

THE ALPHANUMERIC CHARACTER SET

Virtually all home computers generate the same set of alphanumeric
characters: letters of the alphabet, numerals 0 through 9, standard punc-



ine iHo-~-suurapnic unaraciers L%

tuation marks, and a few special symbols. All of these characters have
standard ASCII code numbers (decimal 32 through 95) assigned to them,
and most are directly printable from the keyboard. The lower-case
alphabetical characters that are normally assigned ASCII decimal codes
96 through 127 are not used in this book. Readers who happen to have the
lower-case hardware installed in their systems can use those characters,
however.

The typical listing of keyboard characters and their corresponding
decimal ASCII codes is shown in Fig. 2-4.

The alphanumeric characters occupy the upper four pixels in their
character spaces. The lower set of pixels is always set to black, thereby
forming a space that separates lines of printed text on the CRT.

Many of the alphanumeric characters, especially some of the special
symbols, can be made into interesting parts of wholly graphic figures. The
arrows, for instance, can be shot across the screen from a cupid’s bow,

CODE CHARACTER CODE CHARACTER
2 s 64 @
33 2 :
34 " 66 B
35 $ &7 C
38 & 70 F
39 ; 71 I
40 ¢ 72 H
41 ) 73 I
42 X 74 J
43 + 75 K
44 y 76 L
45 - 77 M
44 . 78 N
47 s 79 0
483 o 80 P
49 1 81 a
50 2 az R
51 3 a3 S
52 4 84 T
53 5 85 u
54 6 86 M
55 7 87 W
54 3 88 X
57 9 89 Y
58 : 70 z
59 ; 91 4
60 92 v
&1 = 23 :
62 i 94
63 7 95 -

FIGURE 2-4 TRS-80 alphanumeric characters having ASCIl decimal
codes 32 through 95



16 CHAPTER 2

periods and asterisks can be printed as stars in a nighttime sky, and com-
mas can be tears from the eyes of a crying face. The applications are
limited only by one’s own imagination and creative skill.

These alphanumeric characters are always printed as white on a
black background. There is no way that can be changed without installing
special hardware. What’s more, each character totally dominates one com-
plete character space on the screen. Even when a tiny character such as a
period occupies just one pixel, the remaining five pixels in the character
location are automatically set to black—nothing else can be printed in
those “‘unused” pixels. You can see that using the special TRS-80
graphics gives one greater control over the screen than using the
alphanumerics does.



Selecting CHARACTERS

and Gerring Them

Ont10 THE SCREEN

The main purpose of this chapter is to make sure you understand the basic
principles for selecting a character and printing it at the desired place on
the CRT screen. The examples are necessarily simple ones. Procedures for
generating more elaborate images will be introduced in the chapter that
follows.

THE TRS-80 VIDEO DISPLAY WORKSHEET

Throughout your experiences with TRS-80 graphics, the selection of
special graphic characters, the placement of any character onto the screen,
and, indeed, the organization of virtually allimages rest heavily on the use
of Radio Shack’s Video Display Worksheet (Radio Shack catalog number
26-2105). See Fig. 3-1.

The worksheet shows the pixel configuration for every character

17



TRS-80 Video Display Worksheet Radie fhaek
TITLE PROGRAMMER ________ PAGE_OF ___

AR RO

FIGURE 3-1 The TRS-80 Video Display Worksheet

18



NI EYg et e bt en e wmriegy st e e e e s e - -

spaceon the screen and, what is even moreimportant, thenumbers used for
designating the character positions.

Generally speaking, a picture is first sketched onto one of the video
worksheets. Since the worksheets are scored with the exact dimensions of
the pixels, character spaces, and field, this preliminary drawing step gives
you a chance to determine the actual sizes, positions, and spacings of all
elements of the picture.

After making the preliminary sketch, you modify the drawing, mak-
ing as few compromises as possible while conforming to the pixel and
character-space configurations.

Then you determine which graphic is to be used in the character
spaces and assign a position number to each of them. Finally, you devise a
computer program that causes your picture to be drawn onto the screen.

There is a lot to be said about the video worksheet and the suggested
drawing procedure, but it is sufficient at this point to indicate the impor-
tance of the worksheet.

POSITIONING CHARACTERS WITH THE
PRINT @ STATEMENT

Asdescribed in the previous chapter, the CRT drawing field is divided into
1024 character spaces. Those character spaces are clearly outlined on the
video worksheet.

Running down the left side of the worksheet is a series of PRINT AT
numbers—0 through 960 in increments of 64. When you are using PRINT
@ statements to position characters on the screen, those numbers indicate
the first character position on each line. So if you want to print the letter A
at the beginning of the second line from the top of the screen, you would
use a statement such as:

PRINT @ 64,“A”

If you want to position a letter B near the middle, left-hand edge of the
screen, you could do this:

PRINT @ 448,"B”

There are also some PRINT AT numbers along the right-hand edge
of the video worksheet. They start at 63 and run through 1023 at intervals
of 64. Those are the PRINT @ positions for characters to be printed along
the right-hand edge of the field. If, for example, you want to place a Cin
the upper right-hand corner of the screen, an appropriate PRINT @ state-
ment would be:

PRINT @ 63,C”



20 CHAPTER 3

Thus the first PRINT @ line begins at 0 and ends at 63. The second
line begins at 64 and ends at 127. All 16 PRINT @ lines are labeled in that
fashion.

But what if you want to print a character somewhere besides the ex-
treme left or right side of the field? Well, there are 64 character spaces in
each line, and they can be numbered consecutively, beginning with the
PRINT AT number on the left side of the worksheet. The TAB numbers
along the top of the worksheet help determine where the character is to be
positioned on each line.

The position numbers for plotting a character with a PRINT @
statement can be viewed as the result of using an X-Y coordinate system.
The Y, or vertical position, is determined by the PRINT AT number along
the left side of the worksheet. The X, or horizontal position, is determined
by the TAB number along the top of the worksheet. You can print a letter
X near the middle of the screen by this statement:

PRINT @ 448 + 31,“X”

The position number for the PRINT @ statement is reckoned by summing
the PRINT AT line number with the TAB space number. Of course you
could do the summing operation yourself, using this statement to do ex-
actly the same thing:

PRINT @ 479,"X”
Use the procedure that suits your own style and manner of thinking.
printing the special graphics

Any of the printable keyboard characters can be plotted on the
screen via PRINT @ statement if the character is enclosed in quotes. The
special TRS-80 graphics characters, however, cannot be printed in that
fashion, simply because those characters are not directly represented
anywhere on the keyboard.

The special graphics must be printed with reference to their code
numbers, 128 through 191. In order to fit one of those code numbersinto a
PRINT @ statement, it must be altered by means of a CHR$ function.
Thus, printing graphic 153 at PRINT AT position 448 calls for a BASIC
statement of this form:

PRINT @ 448,CHR$(153)
To put graphic 191 near the middle of the screen, try this:

PRINT @ 448 + 32,CHR$(191)



Selecting Characters and Getting Them Onto the Screen 21

Thus, the PRINT @ statement can be used for positioning and plot-
ting any of the 64 special TRS-80 graphics as long as the graphic code
number is treated with a CHR$ function.

Incidentally, the ASCII keyboard characters can be printed that
way, too. You can, if you wish, print the letter A at character position 580
by doing this:

PRINT @ 580,CHRS$(65)

Simply apply the CHR$ function to the ASCII code number for the
character you want to print. Whether you use this CHR$ approach, or ac-
tually show the character enclosed in a set of quotes, depends largely on
the situation at hand. No such option exists for the special graphic
characters, however; they must be printed with the CHR$ function.

avoiding the scrolling effect

Whenever a TRS-80 BASIC program comes to a conclusion, the
system automatically prints READY at the beginning of the next line,
and a greater-than prompt symbol on the line after that. In other words,
BASIC programs conclude by committing two additional lines of text to
the READY and prompt symbol.

Further consider that the TRS-80 is set up to scroll lines of text up-
ward, one line at a time, whenever additional lines of text would otherwise
cause the printing to take place below the bottom of the screen. When the
screen is full of text, the next line to be printed goes to the bottom line, all
previous lines are moved up, and the top line is lost. That’s not a bad
feature when you are writing BASIC programs, but it can cause havoc
when you are trying to fix a picture on the screen.

Try this:

PRINT @ 896,CHR$(191)

That statement supposedly prints a graphic 191—a full character space of
white—at the beginning of the second line from the bottom of the screen.
The computer will do precisely that; but when the statement has been ex-
ecuted and the system automatically returns to the BASIC monitor, the
READY message and prompt symbol will appear at the beginning of the
next two lines. That will scroll the display up one line, and your
graphic-191 figure will appear at 832 instead of 896.

The scrolling problem isn’t critical if the last PRINT @ statement
puts a character somewhere else besides the last two lines, but it can be a
problem if you want to print something down there.

There are two ways to get around the hazards of the scrolling effect.



22 CHAPTER 3

One is to make sure the last-used PRINT @ statement does not put a
character anywhere on the last two lines. The other, perhaps more suitable
in most instances, is to prevent the program from coming to a conclusion
until you are finished viewing the picture on the screen.

The following program sequence lets you print a graphic 191 at posi-
tion 960—at the beginning of the last line—without kicking it out of place
when the program ends:

10 PRINT @ 960,CHR$(191)
20 PRINT @ @,

Line 20 puts the cursor at position 0 and prints the null character
{(nothing). The sequence thus ends with the READY and prompt symbol
in the upper left-hand corner of the screen. The graphic-191 character is
printed in the lower left-hand corner, and its position is not disturbed at
the conclusion of the program.

The alternate approach looks like this:

10 PRINT @ 960,CHR$(191)
20 GOT0 20

That is a case of preventing the program from concluding. Graphic 191
will appear at the beginning of the bottom line, and it will remain there in-
definitely. Actually, the program ‘“‘buzzes’ on line 20, and the most
suitable way to get out of the program is by striking the BREAK key. The
READY message and prompt symbols will appear after doing the
BREAK; but until then, you can view the graphic to your heart’s content.

POSITIONING CHARACTERS
WITH POKE STATEMENTS

POKE statements can be used for plotting keyboard characters and
graphics in much the same way PRINT @ statements are used. The screen
is still viewed as 1024 character spaces that are organized into 16 lines
having 64 characters in each line. Only the scaling is different.

The PRINT @ screen format uses position numbers 0 through 1023.
POKE graphics does the same thing using position numbers 15360
through 16383. In fact, it is perfectly legitimate to convert a PRINT.-@
character p031t10n to a POKE ‘position by simply addmg 15360. Con-
versely, a POKE position number can be converted toa PRINT @ number
by subtracting 15360. It can be important to remember those conver-
sions, especially considering that the TRS-80 video worksheet does not
show POKE-oriented screen-position numbers.




plotting the special graphics
with POKE statements

A typical POKE statement has this general form:
POKE 15360,153

That will plot graphic 153 at POKE position 15360—at the extreme upper
left-hand corner of the screen. By way of a slight variation of the idea, sup-
pose you want to plot a graphic 191 near the middle of the screen. Here is
one convenient way to go about it:

POKE(15360 + 448 + 31),191

The 191 in that statement is, of course, the desired graphic code number.
The computer, however, is left to calculate the POKE position: the 448
and 31 come from the PRINT AT and T AB figures on the video worksheet
(together, they represent the PRINT @ position), and the 15360 is added
to convert the number into a POKE position. If you care to do the position
calculation yourself, this statement does the same job:

POKE 15839,191.

E’f;\ny of the 64 special graphic characters can be POKEd that
way—with a POKE position followed by a comma and the graphic code
number.

plotting keyboard characters
with POKE statements

The graphic to be POKEd into a designated position on the screen
must be presented as a numeric value. That requirement suits the special
TRS-80 graphic symbols quite nicely, but one has to be careful when
selecting one of the printable keyboard characters.

The data to be POKEd must be represented as an ASCII character
code. Printing letter A at the upper left-hand corner of the screen is thus a
matter of executing this statement:

Alternately:

POKE 15360,ASC(“A”)

23



24 CHAPTER 3

In the latter instance, the keyboard string character A is trans-
formed into its ASCII counterpart by means of the ASC function. To be
sure, it is an awkward procedure, and perhaps its only redeeming feature
is that it saves you the trouble of looking up the ASCII code number for
the character you want to POKE onto the screen.

avoiding the scrolling effect
and printover

POKEing graphics into the two lower lines on the screen does not, in
itself, cause any scrolling. Scrolling, as described earlier, is the result of
some kinds of PRINT operations in those two lower lines. Even when
using only POKE graphics, however, scrolling can occur when the pro-
gram comes to an end and the system returns to the BASIC
monitor—when it prints the READY message and prompt symbol. Scroll-
ing will occur if the program comes to an end and the PRINT cursor
(whether used or not during the program) happens to be resting on one of
the two lower lines on the screen.

The most effective way to get around that situation is by starting a
POKE-drawing routine with a CLS statement. Doing a CLS clears the
screen and sends the PRINT cursor (although invisible) to the upper left-
hand corner of the screen. And as long as no PRINT statements are used
in the drawing program, the invisible cursor will remain in that corner.
Thus there will be no chance of scrolling when the POKE routine comes to
an end and the system returns to the BASIC monitor.

Then there is another kind of problem. Suppose you write a drawing
program that uses only POKE graphics. Maybe the picture occupies the
entire graphic field. When the drawing routine is done, the program comes
to a conclusion, and then that pesky READY and prompt symbol messes
up the picture. What is the cure for this printover effect? It’s simple: don’t
let the program come to a conclusion until you are ready for it to do so.
And that is best accomplished by putting the program into an endless
loop. Here is a simple example:

10 CLS:POKE 15424,191
20 GOTO 20

The little routine prints a graphic 191, but then latches up at line 20, ex-
ecuting that line again and again. The program never comes to an end, so
the graphic is not messed up by the unwanted appearance of the READY
message and BASIC prompt symbol. You terminate the program when
you're ready by simply striking the BREAK key. '



Composing Singl, 8

Startic Figures

This chapter illustrates the techniques most often used for composing
static, or nonanimated, figures on the screen. The relative complexity of
the picture is irrelevant here; the figures may be made up of a mers handful
of graphic characters or a thousand. The procedures are tailored to one-of-a
kind images that can be interesting or esthetically pleasing in their own
right.

This marks a good starting point for a discussion of TRS-80 graphics
techniques because the programming principles are about as straightfor-
ward as any can be. A good understanding of standard BASIC and elemen-
tary programming procedures suffices in this case. The only trade-off is
the relatively slow drawing speed, but that is not a real problem with
nonanimated, one-of-a-kind drawings.

That is not to say, however, that the techniques offered here are used
only for static drawings. Some of the elements can be used in animated pic-
tures to some extent.

25



STARTING WITH THE VIDEO WORKSHEET

Fig. 4-1 shows a simple graphic design that will be used as a model for
demonstrating the various ways to go about stringing together its
character elements and positioning them on the screen. The characters and
their screen positions will be the same for each of the techniques described,
s0 no matter which technique you decide is best for this particular image,
you will need the same preliminary analysis of its elements.

The first step in composing a picture of this sort is to draw it onto the
video worksheet, making it conform to the arrangement of character
spaces and pixels. Itisequally important at thistime to designatethe areas
that are to be black and those that are to be white. In this case the figure is
to be white on a black background.

The image is also shown in the exact position it is to have on the CRT
screen. As demonstrated in the next chapter, it isn’t always necessary to
make a worksheet drawing that shows the exact position of the figure.
Here, however, the image is to be centered on the screen, and it is shown
that way by the PRINT @ numbers on the worksheet: the middle of the
worksheet is between PRINT @ lines 448 and 512, and between TAB posi-
tions 31 and 32.

After you draw the picture onto the video worksheet, it is time to
specify exactly which graphics are to be used. This is perhaps the most
tedious and time-consuming step; it requires studying each character
space and determining the graphic code for its particular combination of
white and black pixels.

If you look at the first line of characters in this image and study them
from left to right, you will find that the graphic-code sequence is this:

188, 191, 143, 143, 191, 188
The second line of characters is:
139, 191, 188, 188, 191, 135

With these graphic codes thus defined and arranged in a systematic,
left-to-right, line-by-line fashion, the next step is to determine their respec-
tive positions on the screen.

In order to center this image, the first graphic in the first line should
be located at PRINT @ position 477. Once you know that, the other posi-
tions fall into place. With the first line of graphics beginning at 477, the sec-
ond one in that line must be at 478, the next at 479, then 480, 481, and 482.

The worksheet drawing shows that the second line of graphics
begins at PRINT @ position 541, so its remaining characters spaces oc-
cupy locations 542, 543, 544, 545, and 546, respectively.



FIGURE 4-1 A simple worksheet
figure

The analysis defines the exact screen positions for all 12 graphics
used in this particular image. You will soon find, however, that it is rarely
necessary to determine all the character positions: it is usually sufficient
to know just the starting position of each line that is used.

At any rate, the image is now completely specified in terms of the
graphic characters to be used and their positions on the screen. It is finally
time to begin writing BASIC programs for getting that information into
the computer and transformed into the desired picture on the CRT screen.

The following sections describe four different approaches to
generating the appropriate program. Conspicuous by their absence are
POKE and machine-language graphic statement; those are generally
reserved for drawing animated figures.

USING A PRINT @ STATEMENT
FOR EACH CHARACTER

PROJECT 4-1

Write a BASIC program for drawing the image in Fig. 4-1, using a
PRINT @/CHR$ combination for each character. See the suggested
listing in Listing 4-1.

10 REM X% PROJECT 4-1

15 REM SIMPLE FIGURE

20 CLS

23 PRINT @ 477,CHR$C1I88IIFRINT @ 478,CHR$C1IPL)IIFRINT @ 479sCHR$(143)
30 FRINT @ 480,CHRS(143)IFRINT @ 481lyCHR&(171LIIFRINT @ 482,CHR% 188)
35 PRINT @ S41,CHR$(LI3ZIIFRINT @ S42,CHR$CLIPLIIIPRINT @ 543,CHR$(188)
40 PRINT @ S44,CHR$(IBEIIFRINT @ S40-,CHRE(1P1IIFRINT @ 546,CHR$C139)

LISTING 4-1 Programming for Project 4-1

This is hardly the simplest way to go about writing a graphics pro-
gram. Each element in the picture occupies a PRINT @ and CHR$ state-

27



28, CHAPTER 4
ment. Line 25 in the program, for instance, sets the screen positions and
character types for the first three characters in the picture. In a similar
way, line 30 in the program specifies the remaining characters in the first
line of the picture. Lines 35 and 36 in the program do the same task for the
characters in the second line of the image.

This technique requires a lot of typing at the keyboard, and the more
typing one has to do, the greater the chances of making a programming er-
ror. It is, however, a workable procedure that can have some applications
in a few limited instances.

TAKING ADVANTAGE OF AUTOMATIC
CURSOR MOVEMENT

It is possible to use the same general approach suggested by Project 4-1
and yet modify it so that it is easier to type into the computer. This
modification also requires less program memory.

Unless directed otherwise, any sort of PRINT statement, including
the PRINT @ statement, concludes by automatically moving the printing
cursor down to the beginning of the next line on the screen. A subsequent
PRINT statement (not a PRINT @) would begin printing from that place.

However, if the PRINT or PRINT @ statement is directed to sup-
press the automatic linefeed/carriage return feature, the statement con-
cludes with the cursor resting at the next character position on the same
line. The simplest way to suppress the automatic linefeed/carriage return
is to include a semicolon at the end of that PRINT or PRINT @ state-
ment.

What bearing does this have on the topic at hand? It means that it is
possible to write image-drawing programs that use PRINT @ statements
only to specify the starting point of each line in the image. The remaining
characters on a given line can be specified without any direct reference to
their position; the computer itself keeps track of the next character posi-
tion. Consider the following project.

PROJECT 4-2

Modify Listing 4-1 so that a PRINT @ statement appears only where a
new line is to begin in the drawing. See the result in Listing 4-2.

10 REM XX PROJECT 4-2
15 REM SIMFLE FIGURE
20 CLS

25 PRINT @ 477CHR$(188)3CHRS( 191 )iCHRSC 143 )5 CHR$( 143 )5 CHRSC 191 )5 CHR$( 188)
30 PRINT @ S541,CHR$(139 )5 CHR$C 191 Y CHR$C 188 )5 CHREC 188 )SCHREC 191 )5 CHR$(133)

LISTING 4-2 Programming for Project 4-2



Composing Single, Static Figures <Y

Line 25 in the program completely specifies the positions and
graphics for the first line of characters in the image. The first part of that
line points to the position of the first character, but after that the
semicolons inserted ahead of each CHR$ function allows the cursor to
move to the next character position on that same line. Once the starting
point of the line is specified with the initial PRINT @ statement, the com-
binations of semicolons and CHR$ functions take care of setting the
graphics for the remainder of that line.

Line 30 uses the same technique for drawing the elements of the sec-
ond line in the image.

This is clearly a simpler program than the one used in Project 4-1. It
is also easier to debug and modify.

Using this technique, it is still necessary to figure out the graphic
code for each character space involved in the picture. However, when it
comes to specifying the positions, you need be concerned only with the
position of the first characters in each line.

COMPRESSING THE PROGRAM FURTHER
WITH THE STRING$ FUNCTION

Looking over the specifications for the graphics to be used in Fig. 4-1, you
can see that a particular graphic is used twice in succession on two dif-
ferent occasions. In the first line of the image, there are two 143s in succes-
sion, and in the second line there are two 188s used in succession.

Whenever there is more than one graphic of the same kind appearing
in succession, a STRINGS$ function can save some programming time and
memory space. A STRINGS$ function has this general form:

STRINGS$(N,T)

where N is the number of identical characters to be printed in succes-
sion;
T is the character code number.

So a statement such as PRINT @ 512,STRING$(16,191) will print a row
of sixteen 191 graphics, beginning at the PRINT @ location 512. Using
that statement is certainly easier than having to type sixteen CHR$(191)
statements in succession.

A single STRINGS$ function can handle up to 255 successive
characters. Doing PRINT STRING$(255,191), for example, will call for
printing 255 graphic 191s in succession. That is almost four full lines of
them (four lines less 1 character space). But if you type in that command
on your TRS-80, you just might get an OS error—out of string space.
Why is that? What can be done about it?



30 CHAPTER 4

When the TRS-80 is first turned on, or whenever any sort of action
brings up the MEMORY SIZE initialization routine, it automatically
sets aside 50 bytes in memory for string characters. That means the
largest workable STRINGS$ statement is one calling for 50 successive
characters. And that is why the system turns up an OS error when you try
to print strings longer than 50 characters.

To set aside more memory space for strings, simply typea CLEAR n
command, where n is the number of bytes you want to reserve for strings.
Doing CLEAR 2586, for instance, makes it possible to execute the PRINT
STRING$(255,191) statement. Always set aside a number of string bytes
that equals or exceeds the number you will be using in the program.

Doing a CLEAR 1024 from the keyboard will clear quite a bit of
memory for strings. Once that is done, it remains in force until the com-
puter is initialized to MEMORY SIZE again, or until you change the
value by doing another CLEAR command. It need not be written into
every little program you write, just as long as you do the CLEAR com-
mand at the beginning of your work session. However, if you plan to save
the program on tape or disk, it is a good idea to include an appropriate
CLEAR n command at the very beginning of the program. That way, the
program will run properly, even if you load it immediately after turning on
the computer.

Thus if you see the OS error while you are experimenting with
graphics programs, simply take a moment to do a CLEAR command that
specifies a larger number of string bytes.

As illustrated in the next project, STRINGS$ functions can be im-
bedded in a series of CHR$ functions.

PROJECT 4-3

Use STRINGS functions to compress the program from Project 4-2.
See the result in Listing 4-3.

10 REM kX PROJECT 4~3

15 REM SIMPLE FIGURE

20 CLS

25 FPRINT @ 477 ,CHR$C188)5CHR$CLPLIISTRINGSC 2y 143 )5 CHR$C 171 )7 CHRSE(C 188
30 PRINT @ S41,CHR$CI3F05CHRSCLZLIISTRINGS( 2,18 S CHRSC LY ) CHR$( 1335

LISTING 4-3 Programming for Project 4-3

In this case, the program doesn’t appear to be significantly shorter
than the version in Listing 4-2. There would be a much more noticeable
difference if the original program called for using the same graphic a
relatively large number of times in succession.

There is no need to execute the CLEAR command in this case



Composing Single, Static Figures 31

because none of the STRINGS$ statements calls for using more than 50
characters in succession.

This CHR$/STRINGS$ technique is one that can be used for
generating any sort of static pictures on the screen. It is a fairly
straightforward technique, and the programming is easy to follow. The
overall procedure can be summarized as follows:

¢ Draw the desired image on the video worksheet.
¢ Determine the character codes for all the graphics to be used,
preferably arranging them in a left-to-right, line-by-line pat-
tern on a sheet of paper.
* Determine the PRINT @ position for the first graphicin each
line of the image.
¢ Write a BASIC program that:
CLEARSs sufficient string space if any STRINGS$ func-
tion calls for more than 50 characters.
Indicates the beginning of each line in the image with a
PRINT @ statement.
Uses CHRS functions where side-by-side characters are
different.
Uses STRINGS$ functions to compress character codes in
instances where the same character is used more than
one time in succession.

PROJECT 4-4

Use the procedure just outlined to write a BASIC program that draws
the white-on-black image of a burning candle that is shown in Fig. 4-2.
The worksheet analysis is represented in Table 4-1, and the suggested
program is in Listing 4-4.

10 REM ¥% FPROJECT 4-4

20 REM FLAMING CaNDLE

30 CLS

40 PRINT @ 209,CHR$(174)

50 FRINT @ 270yCHR$C184)FCHRSC IR0 IIBTRINGS( 2,191 15 CHR%( 1489
60 PRINT @ 334sCHR$CLIZIISGTRINGSC 3171 )5 CHR$C L33 )

70 PRINT @ 399,CHR%(147)

80 FRINT @ 460 sCHR$(L9LIFCHREC1BBISCHRSI 176 )FCHREC 177 )5 CHREU L7 6
90 PRINT @ S24,5TRINGS$C 62171 )5CHREI 149

100 PRINT @ S88ySTRINGH(7s191)iCHR$(149)

110 PRINT @ 652STRINGH( Sy 1PLYICHRSCLGT IICHRI( 1493

120 PRINT € 716,8TRINGS( 6171 )5 CHR$(133)

130 PRINT @ 780,5TRINGS(65171)

140 PRINT 8 8448TRING${&6y171)

150 PRINT @ 208,8TRING${(&5171)

1460 GOTO 160

LISTING 4-4 Programming for the flaming candle in Project 4-4



FIGURE 4-2 Worksheet drawing for

the flaming candle, Project 4-4

If you can understand the rationale behind the development of the
worksheet analysis and every part of the program listing in that project,
you are in a good position to begin composing static images of your own
design.



TABLE 4-1
WORKSHEET ANALYSIS FOR THE FLAMING CANDLE IN PROJECT 4-4

Image Line Start At Character Codes
1 209 176
2 270 184,190,191,191,148
3 334 175,191,191,191,133
4 399 147
5 460 191,188,176,177,176
6 524 191,191,191,191,191,191,149
7 588 191,191,191,191,191,191,191,149
8 652 191,191,191,191,191,191,159,149
9 716 191,191,191,191,191,191,133
10 780 191,191,191,191,191,191
11 844 191,191,191,191,191,191
12 908 191,191,191,191,191,191

CARRYING THE GRAPHIC CODES
AS DATA ELEMENTS

It can become quite tedious to type long lists of CHR$ and STRINGS
statements for every line in a large and complicated figure. The procedure
suggested in the next project simplifies matters by using just one PRINT
@ and one CHR$ statement for each line in the image to be drawn. All the
character codes are carried in DATA lists and are called, one at a time, to
the appropriate CHR$ function as they are needed.

The operation of this program isn’t quite as straightforward as the
preceding ones, so it may require some special explanation.

PROJECT 4-5

Rewrite the program for drawing the image in Fig. 4-1 in such a way
that it uses a single PRINT @ statement, one CHR$ function, and one
DATA line for each line of characters in the picture. See Listing 4-5.

10 REM ¥k FROJECT 4-5

15 REM SIMPLE FIGURE

20 CLS

25 READ AIFRINT @ 477,CHR$(A)5 IP=61G08UR 30

30 REAL AIPRINT @ S541,CHR$(A) IFP=61GOSUE 50

35 END

50 FOR N=1 TO F~1IREAD AIPRINT CHR$CAD INEXT NIRETURN
125 DATA 188,191-143y143,191,188

130 DATA 1395191,188,188,191,135

LISTING 4-5 Programming for Project 4-5

33



34 : CHAPTER 4

The program can be divided into three sections, and no matter how
complex the picture might be, those three sections prevail. That is one of
the hallmarks of the technique.

The section that hasn’t been used thus far is the DATA section.
There are two DATA lines in this particular case—one for each line of
characters in the image. Furthermore, each DATA line is composed of the
graphic code numbers, in a left-to-right order, for that line. That’s helpful
because the DATA lines look very much like the series of character codes
you generate while making up the specifications from the original video
worksheet; that means it is easier to locate incorrect codes or change some
of them after the original programming has been done.

A second major section of the program appears in lines 25 and 30. In
essence, these lines specify the starting position and the number of
characters in each line of the picture. There are just two lines in the image,
so there are just two program lines dedicated to this purpose. Line 25 in
the program handles the first line in the image, and line 30 handles the sec-
ond.

The first statement in those lines, READ A, reads the first item in
the appropriate DATA list and assigns the value to variable A. Im-
mediately after that, the PRINT @ statement and its CHR$ function plot
that character into the first position of the line. After that, the number of
characters in that line is assigned to variable P; there are six characters in
each line of this image.

With the number of characters to be printed in the line thus assigned
to variable P, the program does a GOSUB 50. Line 50 is a one-line
subroutine that calls the remaining character codes from the appropriate
DATA list and prints them onto the screen.

By the time the system completes its execution of lines 25 and 30,
the drawing is done.

This approach has some nice features. As mentioned earlier, it is no
small advantage to be able to show all the graphics to be printed as items
in a DATA list. That makes the matter of debugging the character code
numbers a rather simple one.

Another good feature of this approach is that there is just one three-
statement program line that is used for setting the starting position, plot-
ting the first character, and setting the number of characters to be printed
in each line of the picture. If the picture happened to be composed of 12
lines of characters, instead of just 2 as shown here, there would be 12 of
those three-statement program lines. In each case, variable A is read from
the DATA list and represents a character code number, and P is the
number of characters in that line. If a line happened to have 56 different
characters in it, P would be set to 56.

Line 50, the drawing subroutine for all but the first character in each
line, remains unchanged, no matter how complicated the picture might be.



Composing Single, Static Figures 30

In the light of some previous illustrations, the only disadvantage of
this approach is that the STRINGS$, data-compression procedures cannot
be applied. (Actually they can be applied, but that tends to destroy the
simplicity of the whole approach). Therefore if an image calls for printing
16 graphic-150 symbols in succession, the corresponding DATA line
would have to show 16 150s in a row.

Here is how you can apply this approach to your own needs. First,
assume you have broken down the image this way:

1. The PRINT AT starting position for each line of characters
2. The graphic codes for each character in each line
3. The number of graphics in each line

Then type in a controlling line for each line in the picture, using this
general format:

READ A:PRINT @ s, CHR$(A);:P = n: GOSUB x
where s is the PRINT AT starting position for the line
n is the number of characters in that line
x is the BASIC program line number for the FOR ... NEXT sub-
routine.

After that, type in the printing subroutine just as it is shown in line 50 of
Listing 4-5. Finally, type in the DATA lists, using one program line for
each line in the picture.

Whenever it is necessary to add or delete a character at one of the
DATA lines in the program, be sure to adjust the value of the P variable in
the corresponding controlling line of the program.

This is the most complex figure yet described in this book, but it
hardly represents the limit of complexity for the suggested drawing and
programming procedures. The real test of your understanding of the mat-
ters is to attempt a drawing of your own.

PROJECT 4-6

Use the DATA procedure just described to generate a BASIC program
for drawing the aircraft figure in Fig. 4-3. The worksheet analysis ap-
pears in Table 4-2, and the suggested program is in Listing 4-6.

10 REM %% PROJECT 4-6

18 REM ALRCRAFT

20 CLS

25 READ AIFRINT @ 192430yCHR$( A IP=41605UR 500
30 REAL A!FRINT @ 286,CHR$(ADS IP=41608UB 500

35 REAL AIFRINT @ 3S1,CHR$(A)YIIP=2IG0GUR 500

40 READ AIFRINT @ 38B44+30sCHR$(A)F IF=41C08UR 500

(cont.)



45 READ AIFRINT @ 448426 CHR$(AYFIF=12IG05UR 500

50 READ AIPRINT £ S35-,CHR$CAIF=18:60SUR 500

55 READ AIPRINT @ 399:CHR$C A IF=181G08UR 500

&0 KEAD AIPRINT @ 463yCHR$(A)FIF=18IGOSUR 500

400 GOTO 4090

S00 FOR N=1 TO F-1IREAD AIFRINT CHR$(A) INEXT NIRETURN
520 DATA 1460:1905,189y144

530 DATA 191,17751785191

535 DATA 1912191

540 DATA 1681915171148

545 DATA 16051805,160-184,151,19151915171,180v144,184,144
550 DATA 16051801285 18621759 175,1915149:191

552 DATA 19121705191 ,191+175,1815128,184,144

555 DATA 1845191,1915191,188,184,191,181,191

557 DATA 191,186, 191,189,184,191,191+1915181

560 DATA 128,130513051305130,12851285128.191

5462 DATA 191,128,128,1284129,1295129,129,128

LISTING 4-6 Programming for the aircraft figure in Project 4-6

fa8]
!
i

o 3]
&
€

FIGURE 4-3 Worksheet drawing for the aircraft figure for Project 4-6



TABLE 4-2
WORKSHEET ANALYSIS FOR THE AIRCRAFT FIGURE IN PROJECT 4-6

Image Line Start At Character Codes

1 192 + 30 160,190,189,144

2 286 191,177,178,191

3 351 191,191

4 384 + 30 168,191,191,148

5 448 + 26 160,180,160,184,151,191,191,171,
180,144,184,144

6 535 160,180,128,186,175,175,191,149,191
191,170,191,191,175,181,128,184,144

7 599 186,191,191,191,188,184,191,181,191
191,186,191,189,184,191,191,191,181

8 663 128,130,130,130,130,128,128,128,191

191,129,128,128,129,129,129,129,128

BACK-SPACE CODE COMPRESSION

Drawing situations often call for plotting a number of full-black, or blank,
character spaces in succession. The graphic code for a blank is 128, and
the ASCII version is a 32. Thus, doing a PRINT CHR$(128) or PRINT
CHR$(32) will plot a fully black character space on the screen.

It is possible, of course, to plot a series of blanks by means of a
STRINGS$ function, doing something such as PRINT STRING$(12,128).
That will plot 12 blank spaces in succession. There is really nothing wrong
with the notion of plotting a series of blanks with the STRING#$ function.
The idea does not suit the DATA list technique however: that technique
uses only CHR$ functions.

TRS-80 engineers have built in a handy procedure for plotting suc-
cessive blanks; they use code numbers 192 to 255 to do the job. In the
TRS-80 user’s manual, they are called space compression codes. Here is
how they work.

Doing a PRINT CHR$(192) does nothing at all (that, in itself, can be
handy at times). Doing a PRINT CHR$(193) prints one blank space, and
doing PRINT CHR$(194) plots two blank spaces in succession. A CHR$
function can be used for printing from 0 to 63 successive blank spaces. All
you have to do is a statement such as PRINT CHR$(192 + n), where n is
the number of successive blanks you want to print. Just remember that n
cannot exceed 63 without bringing up an FC (function code) error.

Thus doing something such as PRINT CHR$(202) accomplishes the
same task as doing a PRINT STRING$(10,128)—they both plot 10 blank
spaces in succession. The advantage of the space-compression version is
that its code numbers can be inserted into DATA lists and implemented
with CHR$ functions.

37 .






Some Composition

Technigues

It is possible to use the drawing techniques described thus far to compose
full-screen pictures of great complexity. The general idea is to plot the en-
tire picture onto the video worksheet, analyze it, line by line, into the ap-
propriate series of graphic codes, and then develop a BASIC program that
generates the image on the screen, line by line and character by character.
The real composition is done on the video worksheet, and the matter of
getting the information into the computer and onto the screen is a purely
routine one.

That approach is entirely satisfactory when one is working with sim-
ple figures, but it can get in the way when one is attempting to compose
pictures having a lot of individual elements, including background detail
as well as some central figures. The techniques offered in this chapter
make it possible to rearrange simpler individual figures once they are
defined in the BASIC program. The individual elements of the picture can
be clearly defined and analyzed on the video worksheet but arranged on
the screen after their individual drawing elements have been entered into

39



40 CHAPTER 5

the computer. The procedure is analogous to cutting the individual
elements of a picture from pieces of paper, then arranging them on a larger
sheet of paper to come up with a complete composition. If nothing else, the
procedure allows the graphic artist a degree of spontaneity in composing
the overall picture. In computer jargon, the idea is one of in-line graphic
composition.

The individual images described in this chapter are still rather sim-
ple ones, but you will find that the composition techniques are suitable for
collecting those simple images into a much larger and more complex pic-
ture.

RELOCATABLE STATIC FIGURES

The key to doing on-screen picture composition is to create picture
elements that can be relocated on the screen with a minimal amount of
program manipulation. This is done by keeping the PRINT @ position
numbers in a very general form.

Fig. 5-1 shows a worksheet version of a simple figure that will be
called SPACE CREATURE. The graphic codes used for generating the
figure are still important, but the PRINT AT positions are not.

First, note the dashed line that is drawn vertically along the left-
hand side of the image. That line is not to be drawn on the screen; rather, it
marks the leftmost starting point for a line of characters. The leftmost
starting line will not be shown in future images in this book, but you
should assume that an imaginary version of it exists.

FIGURE 5-1 Space Creature figure



Some Composition Techniques 41

But here is the important point. Notice that the first graphic
character in the first of four lines in the image is indented one space to the
right of the reference line; the same is true for the first graphic character in
the second line. The first characters in the two lower lines, however, are
situated in the space that is defined by the reference line. The PRINT @
statements for marking the beginning of each of the four lines in this pic-
ture can thus take this general form:

PRINT @ D+ 1, ... characters for first line

PRINT @ D+ 1+64, ... characters for second line
PRINT @ D+ 128, ... characters for third line
PRINT @ D+ 192, ... characters for fourth line

Variable D determines where the image will be printed on the screen.
If, for example, D is set to zero, the first line of graphics will begin at
PRINT @ position 1, the second line will begin at position 65, the third
will begin at 128, and the fourth will begin at 192. With D equal to 0, the
image will be drawn in the extreme upper left-hand corner of the graphics
field, but if D is set to 350, the image will be drawn near the middle of the
screen.

The value of D (the displacement variable) actually marks the
PRINT @ position for the upper left-hand corner of the image. It might be
a virtual position—no graphic actually plotted—but that’s the general
idea. The image can then be respositioned simply by one’s changing the
value of the displacement variable just prior to executing the PRINT @
statements that use it.

PROJECT 5-1

Develop a relocatable version of the SPACE CREATURE image in Fig.
5-1. See the worksheet analysis in Table 5-1 and the suggested pro-
gram in Listing 5-1.

10 REM %% PROJECT 5-1

15 REM SFACE CREATURE

20 CLS

25 Db=0

30 READ AIFRINT @ DH1,CHR$CADGIP=51608UEB 100

35 READ AIPRINT @ [465:CHR$(A)FIF=8I1G0O5UE 100

40 READ AIPRINT @ IM12ByCHR$CA)FIF=101608UR 100
45 READ ALFRINT @ D4192,CHR%(A DS IF=51C0SUE 100
50 6GOTO S0

100 FOR N=1 TO P-1!READ AIFRINT CHR$CA)I INEXT NIRETURN
125 DATA 1725132,19651364156

130 DATA 186+176515691915191.17251764+181

135 DATA 1915191,181,179517951794177,186»191+191
140 DATA 160+1495198,170,144

LISTING 5-1 Programming for Project 5-1



42 CHAPTER 5

TABLE 5-1
WORKSHEET ANALYSIS FOR THE SPACE CREATURE
Image Line PRINT @ Graphic DATA
1 D+1 172,132,196,136,156
2 D+65 186,176,156,191,191,172,176,181
3 D+ 128 191,191,181,179,179,179,179,186
191,191
4 D+ 192 160,149,198,170,144

The character codes from the worksheet analysis are built into the
program’s DATA lists, using space compression codes to replace suc-
cessive blanks, or graphic 128s. The feature important to the present
discussion, however, is the use of the displacement term, D. It is defined in
line 25, then used thereafter to mark the starting point of the drawing for
each new line in the image.

Change the value assigned to variable D in line 25, RUN the pro-
gram, and note the new image position on the screen. If you happen to
assign certain values to D, you will notice the creature figure being split
between the right- and left-hand sides of the screen. Or, you might get an
FC error that indicates you are trying to plot the image too close to the
bottom of the screen. Those two undesirable effects can be avoided if you
take a moment to think through the drawing procedure, noting for
yourself whether the figure will be too close to the right side or bottom of
the screen. Even if you do run the figure off the screen, there’s no harm
done; just assign a smaller value to variable D and try again.

Make up some simple images of your own, and test your understand-
ing of making up BASIC programs for drawing relocatable images.

MAKING MULTIPLE COPIES
OF THE SAME IMAGE

You can draw relocatable figures a number of times on the screen by
simply executing the drawing routine a number of times, using a different
displacement value in each case.

PROJECT 5-2

Revise Listing 5-1 so that it will print eight SPACE CREATURE images
at eight different locations on the screen.



10 REM %X FROJECT 5-2

15 REM MULTIFLE SFACE CREATURES
20 CLS

25 D=0 :GOSUR S030=4501GOBUE 50

30 [=94:GOSUE S0:0=50:GOSBUB 50

35 [=202:CO0SUB S0:iD=3451G0O8UB 50
40 D=370:1GOSUB S010=719:G0GUR 50
45 GOTO 40

50 READ AIFRINT @ D41sCHRECADFIP=51GOSUE 100
55 READ ALFRINT @ IMH6SsCHRE$(A)F IF=B1CO8UE 100
60 READ AIPRINT @ D4128>CHR$CA)S IP=L101GOBUR 100
65 READ ALPRINT @ DH192yCHR$CADS IP=3I1GO5UR 100

70 RESTORE!RETURN

100 FOR N=1 TO P-1!READ AIFRINT CHR$(A)FINEXT NIRETURN
125 DATA 17251325,19651365156

130 DATA 1865176515621919191,172,174,5181

135 DATA 191+191+181517951795179517951865191+171

140 DATA 160:1495198,1705144

LISTING 5-2 Programming for Project 5-2

Here, the drawing statements are rewritten as a subroutine that
begins at line 50. Since it is a subroutine that is called by some control
statements in lines 25 through 40, it must conclude with a RETURN
statement. And since the DATA lists are read each time the drawing
subroutine is called, it must also include a RESTORE statement.

The drawing control portion of the program simply sets a displace-
ment value, D, then calls the drawing subroutine. Only the values of D are
changed just prior to drawing another SPACE CREATURE image.

Any image can be specified just once in a program but then
duplicated as long as sufficient room remains on the screen. This method
is certainly better than writing the same series of PRINT @ drawing
statements for each copy of the image.

CREATING MULTIPLE-IMAGE COMPOSITIONS

Knowing how to relocate a single image on the screen opens the door for
making multiple-image compositions—full-screen pictures that include
two or more separate images. If you know how to generate one image, you
can certainly make two or more of them; and if you know how to relocate
one image on the screen, you can relocate more than one of them. The com-
position technique described here lets you work out the main elements of a
full-screen picture one at a time, gradually working them into a single
composition.

Of course it is possible to work out the entire composition on a video
worksheet, analyze the whole thing into 16 lines of character codes, and
then transform them into one big BASIC drawing program. But that
tends to kill off an important sense of creative spontaneity. It is far more

an



44 CHAPTER 5

exciting to develop a complex, full-screen picture in a piecemeal fashion,
modifying the images and experimenting with new ideas while the picture
is taking shape on the screen.

The following series of projects demonstrate the technique for com-
posing multiple-image, full-screen pictures. You will see that it is an evolu-
tionary process that stimulates a sense of creativity rather than subduing
it under a large-scale worksheet analysis and a tedious program listing.

The picture to be created in these projects is that of a little space
creature landing in a flying saucer. Those are the two main elements of the
picture. After you get those two images situated on the screen, you will
touch up the picture with some background detail, some foreground
elements and the inevitable message, ‘‘Take me to your leader.”

The space creature will be the same one developed through the earlier
projectsin this chapter (a fact suggesting that images created at one time
can be saved and used in later compositions). The flying saucer, however,
has to be worked out from scratch in this case. Its worksheet drawing is
shown in Fig. 5-2.

FIGURE 5-2 Spacecraft figure



Some Composition Techniques 45

The flying saucer is basically a white image placed onto a black
background. There is no need to darken the background on the worksheet
as long as you can identify the pixels and character spaces that are to be
white or black. The black detail within the flying saucer image is
darkened, however, to get a better idea of how it will appear on the screen.

PROJECT 5-3

Generate a BASIC program for drawing the flying saucer image shown
in Fig. 5-2. See the suggested program in Listing 5-3.

10 REM x¥ PROJECT 5-3

15 REM SPACECRAFT

20 CLS

25 D=0 iC0SUE 1010

30 GOTO 30

1000 REM %X DRAWING BUBROUTINES

1005 REM SFACECRAFT

1010 READ AIFRINT @'B+20yCHR$(A)§:F=liGDJUB 1500
1015 READ AIPRINT @ I476,CHR${A)IIF=71605UB 1500
1020 READN AIFRINT @ D+134;CHR$(A)§3:=18 GOSUR 15040
1025 READ AIPRINT @ [4193CHR$CADF IF=28160BUR 1
1030 READ AIFRINT @ [H4256sCHR$(AIF IF=30160BUR 1
1035 READ AIPRINT @ [4323,CHR$C A IF=1516G0BUE 1
1040 READ AIPRINT @ [4386sCHRE( A IF=0IG05UR 13500

1045 RETURN

1500 FOR N=1 TO P-1!{READ AIFRINT CHRSCADIFINEXT HNIRETURH

2000 REM %X DATA LISTS

2005 REM SFACECRAFT

2010 DATA 1365136

2015 DATA 176,18451805176519551605134

2020 DATA 160+190,191,191:19151919191,191+1%1

2022 DATA 191,1915191+191+191,191,191,18%»144

2025 DATA 160:176,1885156,188,191-188-188+,188,188,188,188,188,184
2027 DATA 188,188,188,188:188,188,188,188,191,188,172,188,1765176
2030 DATA 1B4:191,18351815181,191,191»191-191+191,191,191-191+1762176
2032 DATA 176y176,191,1915191,191,191-19121912191,186,184,187 515915180
2035 DATA 152,129,1945129,129,129,1295201 130,130,130, 130,194,137 7144
2040 DATA 142,132,215,142,132

LISTING 5-3 Programming for Project 5-3

Load the program into your system and take a look at the SPACE-
CRAFT figure. Debug the program, if necessary, and tinker around with
the location of the figure by changing around the value assigned to the
displacement variable in line 25.

The next step is to get the SPACE CREATURE into the same pic-
ture.

Listing 5-4 suggests a way to get both the SPACECRAFT and
SPACE CREATURE figures onto the screen. The SPACECRAFT is
drawn by means of the drawing subroutine in lines 1010 through 1045.
The corresponding DATA lists occupy lines 2010 through 2040. As far as



- PROJECT 5-4

Expand the SPACECRAFT drawing program to include the space
creature from Fig. 5-1.

1o REM xX PROJECT 5-4
15 REM SFACECRAFT AND CREATURE
20 CLS

25 D=1546:G05UR 10190

30 D=59216G05UK 10535

35 GOTO 3%

1000 REM X¥ DRAWING SUBROUTINES

1003 REM SFACECRAFT

1010 READ AIFRINT @ [H20,CHR$(A); IP=21G05UR 1500

1015 READ AIPRINT @ D474 CHR$(A) IP=7G05UE 1500

1020 READ AIFRINT €@ DH134CHR$CAYIF=18:G08UB 1500

1025 READ AIFRINT @ DH193sCHR$CA)S IF=281G03UR 1500

1030 READ AIPRINT @ L42546yCHRS(ADISIF=30IG0SUE 1500

1035 READ AIFRINT @ D4323,CHR$(ADI IP=151608UB 1500

10490 READ AIPRINT @ U438&6yCHRSCAIIIF=SIGOSUR 1500

10435 RETURN

10350 REM SFACE CREATURE

1055 READ AIPRINT @ D4H1,CHR$(A)S IF=51606UR 1500

1060 READ AIPRINTY @ D465,CHR$(A)5 IF=8!IC08UER 19500

1065 READ AIFRINT @ IMH128,CHR$(A)F IF=105GOSUR 1500

1070 READ AIPRINT @ D4192:CHR$CA IS IF=5IC05UR 1500

1075 RETURN

1500 FOR N=1 TO P-1iREAD AIFRINT CHR$(A)S5 INEXT MNIRETURN

2000 REM ¥% DATA LISTS

2005 REM SPACECRAFT

2010 DATA 136+156

2015 DATA 176+1845180517651955160+134

2020 DATA 16051905191-191+191+19151%151915191

2022 DATA 191+19151915191519151%1419121895 144

2025 DATA 160+1765188,1565188,5,191,188,188,188,188,188,188,188,188
2027 DATA 188,1885188,188,1688,188-188+188,191:188+172,188,1762176
2030 DATA 184,191,183:181 1811719191519 01911911 9151915191s1769176
2032 DATA 176!17611?1!191!1911191319171?171”1719171861166118/vi?lvlSO
2035 DATA 1S ¢11ﬂ9:19411”971”9v1°?vl“?9201!13ﬂ!l5011a“91a091?4yl31yl44
2040 DATA 1425132,215,142,132

2045 REM SFACE CREATURE

2050 DATA 1725132,19651365156

2055 DATA 1862176915651912191917251765181

2060 DATA 191519151814517951795179+1792 38621915171

2065 DATA 160,1495198-1705144

3040 OATA 14251325215,142,132

LISTING 5-4 Programming for Project 5-4

the SPACE CREATURE is concerned, its drawing subroutine is at lines
1055 through 1075, and the corresponding DATA lines are from 2050
through 3040.

Thus any statement that calls a subroutine at 1010 will draw the
SPACECRAFT figure, and a GOSUB 1055 will draw the SPACE CREA-
TURE. Those routines are called from lines 25 and 30 in this example, and
setting the value of the displacement variable, D, just prior to calling the

46



Some Composition Techniques 47

subroutines effectively sets the figures’ locations. Play around with both
of those displacement values, RUNning the program after each change.
Maybe you can come up with some arrangements for the two figures that
please you more than these do.

Basically, this is a workable technique for positioning more than one
image on the screen. The general idea is to develop the main elements of
the picture separately, perhaps writing some smaller programs to test
your ideas. Then the next step is to write a composite program, one that
includes the drawing subroutine and DATA listing for each of them. Of
course it is important to arrange the figures’ drawing subroutine and
DATA listings in the same order. Having the SPACECRAFT drawing
subroutine refer to DATA for the SPACE CREATURE would certainly
yield some confusing results.

Before carrying this composition any further, note that the program
is divided into three main sections: a control section that positions the
figures and calls the drawing subroutines, a drawing section that actually
does the drawing tasks, and a DATA section for the drawing subroutines.
Also take note of the fact that I began the drawing subroutines section at
a fairly high line number. Doing that, I have a lot of BASIC programming
space—through line number 999—for touching up the composition with
background detail and anything else that happens to strike my fancy as
the composition progresses.

PROJECT 5-5

Complete the composition from Listing 5-4 to include some other
details.

10 REM %% FROJECT 5-5

15 REM SPACE IMNVASION FICTURE

20 CLS

25 REM XX DRAW STARRY BACKGROUND

30 FOR N=0 T0 100:FOKE 13360+RNI{ 512, A5CC" " YINEXT N

35 REM %% DRAW ROCKY BACKGROUNID

40 Ii=Q

43 FOR N=1 TO 1&6!PRINT € 384+DO+RNDCOHI I CHRHCRAND( 63 )41 28 ) INEXT N
50 FOR N=0 TO0 63I1FRINT € 448+DHNyCHRE(RNDCS3)+128 ) INEXT N
55 REM %X DRAW FATH

60 I=554

65 FOR N=1 TO AIPRINT @ [HO60KNySTRINGHC 62" )" )5 INEXT N

70 REM XX ORAW BIG STARS

75 FOR N=1 T0 8IFOKE 15360+RNICS12)sASCOYE" JINEXT N

80 REM %% FPRINT MESSAGE

85 =934

20 PRINT @ Dy"TAKE ME TO YOUR LEADER"

100 REM %X DRAW SFACECRAFT

109 D=1561G05UR 1010

110 REM %% DRAW SPACE CREATURE

115 [=5921605UR 1055

120 GOTO 120 (cont)



1000 REM Xk DRAWING SUBROUTINES

1005 REM SFACECRAFT

1010 READ AIPRINT @ D420 CHR$(A)F IF=21G08UR 15060
1013 READ AIFRINT @ D474,CHR$(A)SIP=71G0SUR 13500
1020 READ AIPRINT @ D+H134CHR$CA) IF=131608SUR 1300
1025 READ AIPRINT @ D193 CHESCAIIIP=28I16G08UB 1500
1030 READ AIPRINT @ [42546yCHRE(A ) IP= 30 GOSUR 1300
1035 READ AIPRINT @ D+323,CHR$(A

1040 READ AIFPRINT @ D+386»CHR$(A
1045 RETURN

1050 REM SPACE CREATURE
1055 READ AIFRINYT €@ D4+1,CHR$C(ADS
1060 READ AIPRINT @ [H6T,CHR$CA)
1065 READ AIFRINT @ [H128yCHR$CA
1070 READ AIFRINT @ D4H192yCHRE(A
1075 RETURN

1500 FOR N=1 TO P-1IREAD AIFRINT CHR$CADFINEXT NIRETURN

2000 REM %% DATA LISTS

2003 REM SPACECRAFT

2010 LATA 1365156

2013 DATA 176+184,180,1765195,1605134

2020 DATA 160,190519151915191-191219121919191

2022 DATA 191,191+191-1915191+191+1915189,144

2025 DATA 160,176,188,156,1688,191,188,188,188,188,188,188,188,188
2027 DATA 188,188,188,188,188,188,188,188+191,188+172,188+176+176

LGOSUR 1500

)
)
)
PERS SN

YidFP=0 obOSUB 1500

H
¥
H
H

- o

:GO UR 13500
=8IGO8UE 1500
F=101608UR 13500
P=51G0SUR 1800

'
H
H

)
)

Pras
R
s
§
M
3

.o e

2030 DATA 184,191,51835181,181,1912191171,191,1919191+1919191v1764176

2032 DATA 17651765191 51919191191519151919191519151865186:187915914180

2035 DATA 182512951949 1295129 1299129200 913051305 13051305194137 9144

2040 DATA 142,132,210,142,132

20435 REM SFACE CREATURE

2050 DATA 172,1325196513641356

2055 DATA 186,17651565191,191+172,176,5181

2060 DATA 191,191,181+179+17951799179+1846»191+1%1
2065 DATA 160,149,198,1701144

3040 DATA 1425132,215,1425132

LISTING 5-5 Programming for Project 5-5

It seems appropriate that a picture such as this one would be en-
hanced by some stars put into a background sky. So I moved the SPACE-
CRAFT and SPACE CREATURE positioning and subroutine-calling
statements down to lines 100 through 115. Then I added a starry-sky
drawing routine at line 30.

The picture needed some better definition for a horizon, so I added
some quasi-random things in lines 40 through 50. Note the displacement
value in line 40; I included that in the event I wanted to move the horizon
up or down at some later time.

Lines 55 through 65 draw a little path between the SPACECRAFT
and SPACE CREATURE figures. If you have relocated either of those
main figures, you will have to relocate the PATH figure as well. How? by
adjusting the value of D in line 60.

The background sky needed a few larger stars, so that is handled by
line 75. And finally, 1 added the TAKE ME TO YOUR LEADER
MESSAGE in lines 80 through 90.



QUL LUHIPJUSILIUIT TECITHYUEDS =T

I hope you can appreciate the flexibility of this approach to compos-
ing full-screen pictures. 1 certainly encourage you to tinker around with it,
adding more detail of your own.

At the risk of insulting your intelligence, 1 should point out that it is
important to structure the program so that the background elements are
printed before the foreground images are. Sometimes that means moving
some of the BASIC lines from one place to another, but if you locate the
complex images (their drawing subroutines and DATA lists) at relatively
high line numbers, all the line changing that is necessary ought to be an
easy task.






String-Packing

Procedures

The drawing procedures described in all the previous projects plot the im-
ages on the screen directly from raw character codes in the BASIC pro-
gram. The character codes are assigned to a CHR$ or STRING#$ function
and PRINTed from there. The picture is built up on the screen either by
reading and plotting one character at a time (as with the CHR$ function),
or by reading and plotting relatively small groups of identical characters
(as with the STRINGS$ function).

That might seem to be a very natural way to go about doing TRS-80
graphics; indeed, it is a straightforward approach that is fairly easy to
understand and master. However, there is an attractive alternative that
offers some distinct advantages.

Rather than reading the raw character codes and plotting them
directly onto the screen, the program can read the codes and assign them,
one full line at a time, to a string variable. The image can thus be defined
as a relatively small number of string variables, each representing a full
line of character information. After that process is completed, the picture

51



52 CHAPTER 6

can be drawn onto the screen by the printing string variables. Once those
string variables are defined, the image can be drawn again any number of
times without making any further reference to the raw character data.

The process of defining string variables from raw character codes is
called string packing. The string variables are packed with character
codes. The actual drawing is deferred until the strings are defined, and
thereafter thereis no further use for the raw character information: the en-
tire image is carried as a set of more or less complex string variables.

As you might imagine, a computer can print a long string, one de-
fined as a string variable, much faster than it can read raw character codes
one at a time and plot them onto the screen. If nothing else, you are going
to notice a distinct increase in image-drawing speed. You are also going to
find that it is easier to manipulate string variables than large amounts of
raw character data.

CHARACTER CODES AND STRING VARIABLES

Anyone who has worked with BASIC programming ought to be familiar
with this sort of routine:

M$ = “HELLO”
PRINT M$

The first statement defines string variable M$ as HELLO. The PRINT
statement then prints the content of that variable; it causes HELLO to
appear on the screen. Changing the string assigned to M$ in the first
statement will cause a different expression to be printed by the second
statement.

Alternately, the same message can be printed this way:

M$ = CHR$(72) + CHR$(69) + STRINGS$(2,76) + CHR$(79)
PRINT M$

In that case, the string variable is defined in terms of a set of concatenated
ASCII codes. CHR$(72) defines the letter H, CHR$(69 defines the letter
E, STRING$(2,76) defines two Ls in succession, and CHR$(79) defines the
letter O. Those characters are concatenated to create a single variable,
MS$. When the PRINT MS$ statement is executed, the HELLO message
appears on the screen.

String packing is not limited to the alphanumeric character codes.
The TRS-80 graphic codes can be packed into a string variable, too.



PROJECT 6-1

Write a program that packs all 64 TRS-80 graphics codes into a single
string variable, then print the content of that variable onto the screen.
See the suggested program in Listing 6-1.

10 REM % PROJECT é-1

15 REM FACKED GRAFHCS SET
20 CLEAR 128

25 M$=N "

30 FOR N=128 TO 191

35 Me=ME+CHRS(N)

40 NEXT N

4% CLS

50 FRINT @ 254,M$

LISTING 6-1 Programming for Project 6-1

The CLEAR statement in line 20 clears 128 bytes of memory for the
string operations. As mentioned in earlier discussions, the TRS-80 nor-
mally assigns only 50 bytes of memory for string variables; this particular
project calls for at least 65 bytes—thus the need for a special effort to ex-
pand the available string space.

Line 25 makes sure the string variable to be packed is clear. If it
should happen to contain any characters before the packing operation
begins, they will appear in the PRINTed version of the string later on. Do-
ing an M$ ="’ statement ensures that the string to be packed is
empty—it is set to the null string.

The actual string-packing operation occupies program lines 30
through 40. The FOR . . . NEXT statements define the TRS-80 graphics
codes one at a time, and line 35 packs them (also one at a time) into string
variable M$. As that FOR ... NEXT loop is executed, the M$ variable
grows longer and longer. It begins with nothing, then grows one CHR$
character at a time until it is 64 characters long.

By the time the program reaches line 45, the string is fully defined
and it can then be PRINTed at any later time. Here, the string is printed
by the statement in line 50.

When the RUN this program, you will notice a short delay before the
screen is cleared (program line 45) and the string is printed (program line
50). One of the hallmarks of a string-packing procedure is an initial time
delay required for packing the strings. Once the string-packing operation
is done, however, the string variables can be PRINTed rather quickly.
Note how quickly the image is printed, once that initial delay is over.

It can be instructive at this point to compare the printing of a string-
packed variable with a drawing routine that is representative of those
described in earlier chapters. Try adding this sequence to Listing 6-1:



54 CHAPTER 6

55 FOR N=128 TO 191
60 PRINT CHRS$(N);
65 NEXT N

In this case, the 64 TRS-80 graphics are printed onto the screen as they
are defined by the FOR . . . NEXT routine. The printing is not deferred as
it is when using a packed string.

Now, when you run this expanded version of the program, you will
see two identical lines of graphic characters appearing on the screen. The
first comes from the packed string, M$, and the second comes directly
from the FOR .. . NEXT routine that has been added at lines 55 through
65.

Run the routine several times. You will see that the first line prints
somewhat faster than the second. Clearly, string-packed variables draw
faster than images generated directly from raw information.

In a manner of speaking, using string-packed variables stores lines
of characters into the computer memory, and as long as nothing is done to
clear the string variables, those strings remain intact in memory. To
demonstrate this fact, run the program just described. When it is done,
strike the CLEAR key to clear the screen, and then ENTER this state-
ment: PRINT M$. There it is! the string is printed onto the screen, even
though the program itself isn’t being executed. That cannot be done with
any of the previous drawing procedures.

STRING PACKING A SINGLE STATIC IMAGE

Fig. 6-1 shows a worksheet drawing, FISH. The following project
demonstrates how to generate a string-packed version of it.

FIGURE 6-1 Fish figure



PROJECT 6-2

Write a BASIC program that uses string-packing procedures to draw
the FISH in Fig. 6-1.

10 REM X% FROJECT 6-2

15 REM FISH

20 CLEAR 256

25 GOSUR 1000

30 REM %% CONTROL ROUTINME

35 CLS

40 N=0:G0SUR 35

45 GOTO 45

50 REM kX DRAWING SUBROUTINE

55 PRINT @ DNsF1%s

60 PRINT @ Iité4yF2%5

65 FRINT € D+128,F3%5

70 RETURN

1000 REM %X STRING-FACKING SUBROUTINE

1005 P=71GOSUR 15001F14=L%

1010 F=141G08UR 1300iF2%=L%

1015 P=131G05UE 13001F3%=L%

1020 RETURN

1500 Le=""1FOR N=1 TO FIREAD AIL$=LE+CHRECAIIHERT NMIRETURN
2000 REM *% [DATA LINES

2030 DATA 172,144,197 1405188180194

2035 DATA 1301751885180, 1765188:191919151915191y 143,189 18
2040 DATA 152,135,131,1594 131143173191 191191y 159,143,129

s 144

LISTING 6-2 Programming for Project 6-2

This program, and all other string-packing programs for that mat-
ter, is divided into five essential sections. One is a set of DATA lines that
look like and serve the same function as those used in earlier projects.
Here, the DATA lines for FISH occupy program lines 2030 through 2040.
There is really nothing new at that point.

A second major section of a string-packing program is the packing
routine itself. In this case, the string packing is done with a subroutine in
lines 1005 through 1500. The FISH figure is composed of three lines of
characters, and those lines are ultimately packed into three different
string variables: F1$, F2$, and F38.

First, note how variable F18$ is packed at program line 1005. Variable
P, used as it was in earlier procedures, tells the system how many
characters are to be packed into the line. P is set to 7, and if you look at the
FISH figure, you will see that the first line is composed of seven graphic
characters. ‘

After setting the number of characters to be packed (concatenated)
into the first line, the routine does a GOSUB 1500 statement. Line 1500 is
a one-line subroutine that does the actual string-packing task. First, a
general-purpose string variable, L$, is nulled; then the first seven items in
the DATA list are packed into string L$—the FOR . . . NEXT sequencein

55



56 CHAPTER 6

line 1500 does that, as described a bit earlier in this chapter. Line 1500
concludes with a RETURN statement that returns operations to the end
of line 1005.

When the routine returns from line 1500, L$ is the packed string
variable. The final statement in line 1005 assigns that string to another
variable that is peculiar to the first line in the FISH figure, variable F18.

That sequence of operations is repeated in lines 1010 and 1015:
variable P is assigned the number of characters to be packed in one line,
subroutine 1500 packs the characters from the DATA list into string L$,
and when the routine returns to its calling line, the value of L$ is assigned
to the appropriate line variable.

By the time the routine reaches the RETURN statement in line
1020, the packing for the FISH image is done.

From the string-packing routine, the program returns to the begin-
ning of another major section of the program, the control routine. Begin-
ning at program line 35, the control routine clears the screen, sets a
displacement value (the same expression used for relocatable images as
described in the last chapter), and calls a subroutine at line 55.

The fourth major section is the drawing subroutine, which, in this
particular project, begins at line 55 and runs through its RETURN state-
ment in line 70. This section simply prints the packed strings in their pro-
per sequence and at their designated positions on the screen. When the
drawing routine has been executed, the image is on the screen, and control
returns to line 45 of the control routine. Here, the program simply loops on
that line to preserve the image until the user strikes the BREAK key to
end it.

Finally, there is always a need for a short initialization routine. It is
placed at the very beginning of the program (lines 20 and 25 in this exam-
ple), and its purpose is to CLEAR an adequate amount of string space and
call the string-packing routine. If the program happens to use dimen-
sioned array variables—which this one does not—the arrays are defined in
that initialization section.

The foregoing discussion deals with the five major sections of the
program in the order they are executed. Before going to the next topic,
you might find it helpful to study the major sections in the order I suggest
they appear in the program for any string-packed drawing routine.

the initialization routine
This short routine must appear first in a string-packed drawing pro-

gram. The purpose is to set up the computer for running the program at
hand. This includes:

e CLEARing the necessary amount of memory space for the
strings. The amount to be cleared must be equal to or greater than



String-Packing Procedures 57

the number of elements in the DATA listings plus the number of
string variables cited in the program. Rather than counting out
the number of DATA elements and strings, it is usually sufficient
to CLEAR some arbitrarily large number of spaces. You know you
haven't cleared enough string space when the execution of the
string-packing routine turns up an OS error.

¢ DIMensioning any arrays used in the program. Arrays have not
been used in any of the previous projects, but they will appear in
future versions. String-packed variables are sometimes expressed
as arrays—F$(6) for the sixth line in a figure defined by string
variable F'$, or F$(2,6) for the sixth line in version 2 of a set of
figures defined by variable F'$.

* Defining variable types with statements such as DEFSTR. Defin-
ing a set of variable names in this fashion saves you the trouble of
attaching a dollar-sign symbeol to indicate a string variable.

¢ Calling the string-packing subroutine by means of a GOSUB
statement.

the control routine

The control routine determines what is to be done with the string-
packed images that are available to it. This is the real workhorse of the
program.

In its most elementary form, the control routine first clears the
screen, then sets the displacement value for a figure and calls the ap-
propriate drawing subroutine. Finally, it concludes with a statement that
ends the program.

As you will see later in this chapter, the control routine is all that is
usually modified in order to change the ways the figures are presented.
This part of the program, for example, is used for PRINTing any number
of identical images, placing multiple images onto the screen, doing time
delay operations, and even doing some simple animation sequences.

Once all the other major sections are written and entered into the
computer, the control section is the one that is set aside for determining
what is to be done with the figures that are available.

the drawing subroutines

A portion of the program listing must be set aside for doing the ac-
tual drawing operations. Assuming that the images have been packed into
well-defined string variables, the drawing subroutines simply do line-by-
line PRINT operations that refer to those variables.

There will be one drawing subroutine for each unique figure to be
drawn on the screen, and they are all called from the control routine.



58 CHAPTER 6

It is a good idea to begin the drawing subroutines at rather high
BASIC line numbers, thus leaving plenty of lower-numbered lines for
tinkering with the control routines.

the string-packing subroutine

The string-packing subroutine is called from the initialization
routine, and it is responsible for packing the designated string variables.
This subroutine defines the line-by-line string variables and packs them
with character codes from the DATA list.

The string-packing routine is run only one time—at the beginning of
the program. Once the strings are defined and packed, there is no need for
repeating the process until the program is RUN from the beginning again.

There will be one three-part line in the subroutine for every line of
characters in each unique image in the drawing. Those three parts include:

* Setting a variable equal to the number of characters to be packed
into a given string.

* Calling a line-packing routine (such as line 1500 in Listing 6-2).
That routine is the same for every string-packed drawing pro-
gram, no matter how large or small it might be.

¢ Setting a specific line variable equal to the general-purpose string
that is packed by the second step.

A RETURN statement concludes the string-packing subroutine,
returning program control to the control routine.

DATA listings

Throughout this book, the DATA listings appear in groups of the
highest-numbered BASIC program lines. The DATA lines carry the se-
quences of character codes for every unique image to be PRINTed on the
screen. They are READ by sections of the string-packing routines; once
the strings are packed, the DATA items have served their purpose.

The DATA listings are organized in the same way as described in
Chapter 5.

DUPLICATING A STRING-PACKED FIGURE

As mentioned in the previous section, the actual function of the program
is determined by the nature of its control routine. The drawing, string-
packing, and DATA routines that define and draw the figures need not be
changed in most instances. Altering a string-packed drawing routine to



String-Packing Procedures 59

make it duplicate the same figure at different places on the screen is
largely a matter of revising just the control routine.

PROJECT 6-3

Revise Listing 6-2 so that it will print six Fish figures on the screen. See
the program in Listing 6-3.

10 REM %% FROJECT 6-3

15 REM LOTS OF FISH

20 CLEAR 2S6IDEFSTR Fel.

25 GASUR 1009

3¢ REM %X CONTROL ROUTINE

35 CLS

40 D=01GOSUR 110:0=90!GOSUR 110

45 U=17351G05UR 11030=572:G0OSUE 110

50 D=4781C08UR 11030=393:G0SUER 110

95 GOTO 25

100 REM %% URAWING SUBRQUTINE

105 DRAW  FISH

110 FRINT @ D.F13

1135 PRINT 8 D+64.F23

120 FPRINT @ 041285F35

125 RETURN

1000 REM %% STRING-FACKING SURROUTINE

1005 P=71GOSUR 135001F1=L

1010 P=141GOSUR 15001F 2=

1015 P=131G08UR 1500 tF3=L

1020 RETURN

18500 L=""I{FOR N=1 TO PIREAD AIL=L+CHRE(A)INEXT NIRETURN
2000 REM %X DATA LINES

2030 DATA 172+144,1975140518851805196

2035 DATA 130,17551885180-17651889191519151915 194 91437,189,188, 144
2040 DATA 152,1355131+194213191435175,1915191 71911595 143,129

LISTING 6-3 Programming for Project 6-3

The fact that six versions of FISH are drawn on the screen is deter-
mined by the changes in the control portion of the program. See how the
job is done in lines 40 through 50. In each case, a displacement value is
assigned to variable D, and the drawing subroutine (not at lines 110
through 125) is called.

Give it a try.

The five-part format described earlier for string-packed drawing pro-
grams now breaks down this way:

Initialization routine (lines 20 and 25)
* CLEAR 256 string locations in memory.

* DEFine variables F and L as string variables.
¢ Call the string-packing subroutine at line 1000.



60 CHAPTER 6

Control routine {lines 35 through 95).

¢ Clear the screen.

¢ Set the displacement value and call the drawing subroutine for
each of the six FISH figures.

* GOTO line 95 to put the program into an endless loop.

Drawing subroutine (lines 110 through 125)

e PRINT the three lines of characters for the FISH figure at the
designated displacement locations.

String-packing subroutine (lines 1005 through 1500)

¢ Pack the general-purpose string variable, L, with the designated
number of characters, P.

DATA listing (lines 2030 through 2040)

® Define the character codes for each character in the FISH figure.

CREATING STRING-PACKED COMPOSITIONS

As was described earlier in this chapter, any worksheet image can be
packed into a series of string variables, where each variable represents one
line of graphic characters in the image. There is, however, nothing to pre-
vent you from creating more than one string-packed image; what’s even
more fun is tinkering with the control section of a multi-image program to
compose a full-screen picture.

The general idea is to work out some main images to be placed into a
composition and then write some programming for the string-packing and
drawing subroutines for each one. Of course, it is necessary to assign a dif-
ferent string variable to each line of each image to be used.

With that part of the job done, all that remains is to devise a control
section—a section that places the individual images at desired places on
the screen and calls the drawing subroutines for plotting them at those
places.

PROJECT 6-4

Use the FISH in Fig. 6-1 as a starting point for developing a multi-
image composition. Invent a LITTLE FISH as well, and make some bub-
bles, a large WATER PLANT, and some BOTTOM STUFF. The sug-
gested program, FISH COMPOSITION, is shown in Listing 6-4.



10 REM %X FROJECT 6-4

15 R
20
25 C
30 G
100
105
110
115
120
125
139
133
149
145
495
500
505
59190
G153
520

525

530
535
540
545
550

555

560
56%
570
575
580
585
590
595
600
605
610
615
10090
1005
10190
1015
1020
1025
1030
1035
1040
1045
1050
1055
10690
1065
1070
1075
1080
1085
1495
1509

EM

LEAR S12I1DE
0SUE 1000
REM *% CONT
cLs
D=208:GOSUER
=183 1 GOSUR
I=3431G0OSUER
0=4687 tGOSUR
=157 {GOSUK
=362 GOSUR

FISH COMPOSITION

REM %% INITIALIZATION ROUTINE

FSTR Fol
ROL ROUTINE

G101 0=473G08UR
S3GN=307 1GOBUR
535i=5621G08UR
G35

SP00=424 1GOBUR
4051 0=6851605U8

510
535
533

570

603

545

613

=385 GOSUR
[=8321G05UR
GOTO 493
REM *% DIRAWING SUBROUTINES
CLs :
FRINT @
FRINT @
FRINT @
RETURN
REM
PRINT @
REM
PRINT @
PRINT @
PRINT @
PRINT €
@
@
@

DeFiC1)s
DHé4rFL(2)5
O+128,F1C3)5

LITTLE FISH
DsF25 IRETURM

WATER PLANT
D4+25F 301 )
D+HESsF32)4
DH1305,F3(3)3
DH193,F30 403
D4256,F3C 55
043202 F3( 65
D+389,F3(7)3

PRINT
PRINT
FRINT
RETURN
REM
PRINT @
FRINT @
REM
PRINT €
REM
PRINT @

BIG BUBBLES
D-1ym0" 5 (PRINT @ [4+64570"5
4128, 0" § IRETURN

LITTLE RURRLES
Dy 3" 5 IRETURN

BOTTOM BTUFF
By FACLHFEC2 )5 IRETURN
REM ¥X STRING-FACKING SUBROUTINES
REM BIG FISH
P=7tGOSUR 135001F1C1 )=l
P=14{GOSUE 150031F1(2)=L
P=131G0O8UR 1300:F1({3)=L
REM LITTLE FISH
P=51GOSUR 1500 1F2=L
REM WATER PLANT
F=631608UB 1500 1F3( 1 )=L
F=81608UR 15001F3C2)=L
F=81GO0SUR 150031F3( 3 )=L
F=81GOSUR 1800 1F3 4 )=L
F=91608UR 1500IF3( 5 =L
F=101GOBUR 15003IF3( &)=L
F=21G08UE 15001F3(7 =L
REM ROTTOM STUFF
F&CL)=""IFOR N=1 TO &641F6(1
F&C2)=""1FOR N=1 TO &4iFa(2
RETURN
L=""1FOR N=1 TO PIREALD

{i

i

€ L HCHRSC R
€2 )+ CHE${ RN

y=Fé
=Fe

61

C2I+L2830NEXT N
{64 3HL1EBYINEXT N

ALL=L+CHRECAIINEXT NIRE



20090
2005
2010
2015
2020
2025
2030
2035
20490
2045
2050
2055
2060
2065
2079

REM ¥k DATA LISTINGS

REM RIG FISH

DATA 172514421975140,188,1802196

DATA 130,175y188180,176,188,191v1%1v190L» 1919143, 18521882144
DATA 152,135,131, 1945 1301435175190 01909121 L8% 5 145,129
REM LITTLE FISH

IATA 174,187+1915140,183

REM WATER FLANT

DATA 1367144:130,148,128,148

DATA 1605128217351 7051285,15451289160

DATA 1655130,1715128+14851605133,132

DATA 1445138180, 18691765181,1504131

BATA 160213851405 140-148+191,176918451239

DATA 130513951735 1769178,171:1605135651404133

DATA 171+131

LISTING 6-4 Programming for Project 6-4

Here is how the individual images are defined and drawn:

BIG FISH. BIG FISH is packed by program lines 1010 through
1020, and those lines use the DATA from lines 2010 through 2020.
When the packing is done, BIG FISH is defined as variables F1(1),
F1(2), and F1(3). It is drawn by calling its drawing subroutine at
line 510.

LITTLE FISH. Animage of a smaller fish is packed at program
line 535, and it uses the DATA in line 2030. Anytime after that,
LITTLE FISH can be drawn by calling its drawing subroutine at
line 535. The string variable in this case is F2.

BIG BUBBLES. BIG BUBBLES for the BIG FISH are not
packed into a string variable; they are too simple to bother with
that. Rather, the BIG BUBBLES are defined and drawn by call-
ing a subroutine at line 590.

LITTLE BUBBLES. Asis indicated by the combined definition
and drawing routine at program line 605, LITTLE BUBBLES are
simply a colon figure.

WATER PLANT. This is a relatively complicated image that is
defined by the string-packing routine in lines 1040 through 1065.
That routine uses the DATA elements in lines 2040 through 2070;
when the packing is done, WATER PLANT is carried by string
variables F3(1) through F3(7)—seven individual lines that are
assigned to figure 8 in the composition. The WATER
PLANT is drawn by calling its drawing subroutine at line 545.
BOTTOM STUFF. BOTTOM STUFF is packed into string
variables F6(1) and F6(2) at program lines 1080 and 1085. Al-
though the exact configuration of BOTTOM STUFF is deter-
mined by a set of random functions, it remains unchanged after its



String-Packing Procedures b3

strings are packed. BOTTOM STUFF is drawn by calling its
drawing subroutine at line 615.

The foregoing discussion actually describes the purpose of program
lines 500 through the end of the listing. Clearly, the matter of packing the
string variables and setting up the drawing subroutines accounts for a
majority of the work involved in writing this particular composition pro-
gram. The string-packing subroutines and associated DATA lists occupy
program lines 1000 through 2070, and the drawing subroutines use pro-
gram lines 500 through 580.

All that remains is a short initialization routine and a control
routine. As far as the initialization routine is concerned (program lines 25
and 30), the idea is to clear some space for the string variables and define
any variable name beginning with F or L as a string variable. The latter
feature makes it possible to specify all the string variables without having
to type a dollar sign after each of them. The last step in the initialization
routine (line 30) is to call the string-packing subroutine.

The control routine occupies program lines 105 through 495. This
part of the program determines where each image will appear and how
many identical images are to be used.

The control routine makes sense only if you keep track of the draw-
ing subroutine numbers:

510 for BIG FISH

535 for LITTLE FISH

590 for BIG BUBBLES
605 for LITTLE BUBBLES
545 for WATER PLANT
615 for BOTTOM STUFF

Using those drawing subroutine numbers as a guide, you can see how the
control routine does its job:

Line 105: Clear the screen for doing the drawing.

Line 110: Draw two BIG FISH at PRINT @ positions 208 and
473.

Lines 115-125: Draw five LITTLE FISH.
Line 130: Draw two sets of BIG BUBBLES for the BIG FISH.

Line 135: Draw two sets of LITTLE BUBBLES for a couple of
LITTLE FISH. Add more if you wish.

Line 140: Draw the WATER PLANT at position 385.



64 CHAPTER 6

Line 145: Draw the BOTTOM STUFF.

Line 495: Lock the program into an endless loop so that a READY
message doesn’t destroy the composition.

When this program is run, you will notice an initial time delay of
about seven seconds. That is the time required for packing the strings.
Once the string packing is done, though, the image is drawn fairly rapidly
on the screen. Some of the projects suggested in the next chapter clearly
demonstrate the advantage of being able to plot packed variables in rapid
succession.



More Abour
String Packing

The discussions in Chapter 6 suggest that string-packing procedures can
be a vital part of good TRS-80 graphics, especially when it comes to
creating multi-image or complex compositions. The material in this
chapter carries the idea even further, offering some new ideas and paving
the way toward doing some higher-performance POKE and machine-
language graphics.

THE IMPORTANCE OF THE CONTROL SECTION

A program that runs string-packed images is made up of five basic sec-
tions. Three of them determine what figures are to be drawn; those are the
sections defined earlier as the drawing subroutines, the string-packing
subroutine, and the DATA listings. A fourth section, the initialization sec-
tion, is largely responsible for setting up the computer to run the program,

65



FIGURE 7-1 Worksheet Elephant figure for Project 7-1

but it is the control section that determines when and where the available
images are drawn.

The following program is built around a single, simple graphic

figure—that of a little elephant. See Fig. 7-1. With such a simple figure, it

fo

llows that the string-packing, DATA listings, and drawing sections of

the program will be quite short and simple. The real burden of the program-

m
m.

P

10

15

25

30

35

100
105
110
115
120
125
130
135
140
145
150
155

ing in this case rests with the control section—the section that deter-
ines what is to be done with the simple figure.

ROJECT 7-1

Listing 7-1 represents a simple program that is intended to help
youngsters learn to count objects. Each time the routine is executed, a
random number of ELEPHANT figures (between 1 and 9 of them) ap-
pear on the screen. The user responds by entering his or her notion of
HOW MANY ELEPHANTS ARE HERE? The program then offers a
response that is appropriate to the answer that is given.

REM ¥ PROJECT 7-1

REM COUNT THE ELEFHANTS
CLEAR Z28461DEFSTR F
CLSIFRINT STRINGH(8,13)58TRINGH 20,3205 %% COUNT THE ELEFHANTS k"
GOSUR 1000 '
FOR T=0 TO 1000INEXT 7T

REM %% CONTROL ROUTINE

CLS

CLSIN=RND( ?)IU=015=0

FOR C=0 TO N-1

IF Cx0 AND C/3=INTCC/3) THEN V=U+193
[=U+Ck21IGOSUER 505

NEXT C

GOSUR G301GOSUR 535

INFUT &

IF S<>N THEN 160

IF N=1 THEN GOSUR 540 ELSE GOSUR 545
GOTO 148



160 IF N=1 THEN GOSUE 5350 ELSE GOSUR 35
165 INFUT S$160TO 110

500 REM %% DRAWING SURROUTINE

505 PRINT @ DsF1s5

S10 FRINT @ D464-F25

515 FRINT @ D4H130,F3%

520 RETURN

525 REM MESBAGES

530 PRINT @ 832 STRING$( 128y 32)5 IRETURN

533 FRINT @ 832,"HOW MaNY ELEPHANTS ARE HERE" LRETURN

540 PRINT @ 832,"Y0U ARE RIGHT!! THERE I5 1 ELEPHANT HERE.®IGOTG Sa9
5435 PRINT @ 832,"Y0U ARE RIGHT!! THERE ARE"S"ELEFHANTS HERE.“IG0TO 560
550 PRINT @ 832,"50RRY, THERE IS5 JUST 1 ELEFHANT HERE, NOT"S"OF THEM."
552 GOTO 360

555 PRINT @ 832."S50RRY, THERE ARE"N"ELEFHANTS HERE, NOT"S8"0F THEM.®
560 PRINT "STRIKE THE ‘ENTERZ KEY FOR YOUR NEXT TURMN..." IRETURN

1000 REM ¥X STRING FACKING SUBROUTINE

1005 F=17(GOSUR 15001F1=F

1010 F=1716G0SUR 15001F2=F

1015 P=8SI1GOSUR 15001F3=F

1020 RETURN

15090 F=""1FOR N=1 TO PIREAN AIF=F+CHR$CAIINEXT NIRETURN

2000 REM %X DATA LISTS

20035 DATA 144516851905191-,19151%91-191,188,188,1885191,1%1,136

2007 DATA 180,138,131,191

2010 DATA 13151315175+1912143y1435143,191,19L 1355130 9131,138

2012 DATA 143,143,143,143

2015 DATA 130,131-195,1315131

[4]
[ 43

LISTING 7-1 Programming for Count the Elephants in Project 7-1

This string-packed graphics program can be analyzed this way:
Initialization routine (lines 20-35)

CLEAR 256 bytes for string variables.

Define any variable beginning with F as a string variable.
Clear the screen and print a title.

Call the string-packing subroutine.

String-packing subroutine (lines 1005-1500)

* Pack the three lines of the figure as variables F1, F2, and F3.
DATA listing (lines 2005-2015)

¢ Define the character codes for the image in Fig. 7-1.
Drawing subroutines (lines 505-560)

* Draw the graphic by calling the subroutine at line 505. Use a
displacement value of D and string variables F1, F2, and F3.

67



68 CHAPTER 7

e Print a message. Lines 530 through 560 include a series of
messages that are called at the appropriate times from the control
section of the program.

Control routine (lines 105-165)

e Clear the screen.

* Select a random number between 1 and 9.

¢ Plot that number of ELEPHANT figures in an orderly pattern on
the screen.

* Erase any old messages (GOSUB 530) and print a request for an
answer (GOSUB 535).

e INPUT the user’s answer (line 140).

e Check the answer and make an appropriate text response (lines
145-160).

e Wait for the user to strike the ENTER key, then display another
set of ELEPHANT figures.

As far as the graphics are concerned, this program is a simple varia-
tion of the image-duplicating procedure described in the previous chapter.
The ELEPHANT figures are all identical, and they are drawn from the
same set of string-packed variables, F1 through F3.

Generally speaking, a string-packed image is drawn from the control
routine by first setting a displacement value and then calling an ap-
propriate drawing subroutine. That is the case here, but the matter of set-
ting the displacement value is a bit tricky. The problem is to set the
displacement values for some number of figures in such a way that the
ELEPHANT figures line up in an orderly pattern on the screen, making
certain that no part of an image is broken off at the right side of the screen
and folded over to the left side. The purpose of the mathematics in lines
120 and 125 is to come up with a different displacement value for each
figure that is to be drawn.

Recall that one of the drawbacks of using string-packed graphics is
the initial time delay required for packing the string variables. A clever
way to cover for this delay is by printing a title message just before calling
the string-packing subroutine. The user thus gets the impression that
you’ve taken the trouble to show a title message when, in fact, you are us-
ing it to gloss over the necessary initial delay in activity.

In this particular program, the image is so simple that its string-
packing operation takes less than two seconds. That’s a tolerable delay in
any event, but the title message specified in line 25 is used anyway for il-
lustrative purposes. In fact the string-packing delay is so short that it
seemed to be a good idea to add a bit more delay, and that is the purpose of
the routine in line 35.



More About String Packing 69

As an exercise, see if you can sort out the graphics portions of the
program from everything else. Doing that, you ought to realize that the
graphics routines are essentially the same as those used in the previous
chapter. They are simply dressed up with other kinds of programming
routines that transform a simple graphics demonstration into a useful
program.

MULTIPLE-IMAGE SEQUENCES

Once some images are committed to string variables, they can be drawn
fairly rapidly on the screen, and that brings up the possibility of creating
programs that display sequences of images. The idea is to string-pack and
make up drawing subroutines for two or more figures, then devise a con-
trol routine that draws the figures individually.

PROJECT 7-2

Use the AIRCRAFT picture from Fig. 4-3 and the RACE CAR figure
shown in Fig. 7-2 to create a program that sequentially shows only the
RACE CAR, only the AIRCRAFT, and both the RACE CAR and AIR-
CRAFT. See the suggested program in Listing 7-2.

10 REM %x PROJECT 7-2

15 REM MULTIFLE FRAME DEWO

20 CLEAR 1024IDEFSTR FsLoM

25 CLSIFPRINT STRING$(Br13)3sSTRINGS(21+32)5 "% MULTI-FRAME DEMO #*&"
30 GOSUR 1000

100 REM XX CONTROL ROUTINE

105 CLS

110 D=1481G0SUB 510:GOSUR 128

115 D=1501GOSUB 335:1GOSUR 125

120 D=1361G08UB S10i0=1721G0SUR 5351G05UB 125316070 110
125 PRINT @ 896»" ENTER’ FOR NEXT FRAME"

130 G$=INKEY$!IF S$é="" THEN 130 ELSE CLSIRETURN

500 REM *%x DRAWING SUBROUTINES

505 REM RACE CAR

510 PRINT @ DsF1C1)5IPRINT @ DH64,F1(2)5

515 PRINT DEI33,FIC3 )5 LPRINT @ DH1985F1C4)5
520 PRINT [4238,F1(5)5 IFRINT @ I4322+F1(6)5
G285 PRINT [4386FL( 7 )i IRETURN

@
@
@
530 REM AIRCRAFT

533 PRINT @ D47,F2U1)5I1FRINT @ D4+71,F2(2)5
540 FPRINT @ IH1346yF2(3)5 LPRINT @ DH199:F2(4)5

G545 FRINT @ I[H4259.F2(5)5 IFRINT @ D4320,F2(6)5

530 FRINT @ D+384,F2(7)5IPRINT @ D+448,F2(8)§

553 RETURN

1000 REM %% STRING-PACKING SUEBROUTINES

1005 REM RACE CAR

1010 P=21:1GOSUR 1500:F1( 1)=LIP=23:G05SUB 1500F1{2)=L
1015 P=13160SUR 1500:F1(3)=LIP=111GOSUR 1300IF1C 4)=L

{cont.}



1020 P=17COSUR 1500:F1(5)=LIP=19:C08UR 1000IF1{6)=L
1025 P=19:GOSUR 15001F1(7)=L
1030 REM AIRCRAFT

1035 P=43COSUR 15001F2(1)=LiP=41G0SUR 1500iF2(2)=L
1040 F=2iG0SUR 1500:F2(3)=LIP=41GOSUR 1500:IF2(4)=L
1045 P=121C0SUR 1500F2(5)=LIF=181GO8UR 1300IF2( &)=L
1050 FP=181CG05UR 1500IF2(7)=LIP=18IG08UK 1500IF2(8)=L

1035 RETURN

1500 L=""{FOR N=1 TO FIREAD AIL=LACHR${AIINEXT NIRETURN
2000 REM %X DATA LISTS

2005 RACE CAR

2010 DATA 168,188,188,194,188,188,188-176,184,183,179
2012 DATA 187+18051765188,188:188,174,188,188,148

2015 DATA 1701915191131 +131,1912191,147,191,191,151,191
2017 DATA 17151915191 517051915191 51315131191 ,191 5147
2020 DATA 17151515191,1712189,18951915190,190,191,191:171+,151
2025 [IATA 1499191519151595,129512851302175,19151914170
2030 DATA 1769176:144517021495191517215181,195

2032 DATA 18651915191 51705149516021762176

2035 DATA 19151915157+191718951915171+517151715171

2037 DATA 191+5191+1921+1912190517151745191,171

2040 DATA 131,131+129412851759191517921795177+177

2042 [DATA 179+179+179519151595128-,130-131,131

2050 REM AIRCRAFT

2055 DATA 160:190,189y144

2060 DATA 191,177,178+191

2065 DATA 191,191

2070 LATA 168:191,191,148

2075 DATA 160+180+160,18451515191+19151715180,144,1845144
2080 IIATA 160,1805,128,186+1755175,1915149,191

2082 DATA 191,1705191,191,175,181,128,184,144

20475 DATA 186+,1915191,1915188,184,171,18151%1

2087 DATA 191+184651921518957184,1915,191+171+181

2090 DAFA 12851305 130513051301285128,1285191

2092 DATA 191,128,12851285,1295129129129,128

LISTING 7-2 Programming for Project 7-2

The five-part analysis of this listing is as follows:

Initialization routine (lines 20-30)

Control routine (lines 105-130)

Drawing subroutines (lines 510-555)
String-packing subroutine (lines 1010-1055)
DATA listings (lines 2010-2092)

As far as the RACE CAR picture is concerned, it is packed by the
routines in program lines 1010 through 1025. The seven lines in the pic-
ture are assigned to string variables F1(1) through F1(7), and the
character data is read from lines 2010 through 2042. The RACE CARis
then drawn on the screen by setting its displacement value and calling its
drawing routine at line 510.

The AIRCRAFT pictureis string-packed at lines 1035 through 1055,



FIGURE 7-2 Worksheet Race Car figure for Project 7-2

and its lines of characters are assigned to string variables F2(1) through
F2(8). The DATA is taken from lines 2055 through 2092, and the AIR-
CRAFT image is drawn by calling its drawing subroutine at line 535.

Once the strings are packed for both images, the control routine
manages their presentation on the screen. The instructions in line 110 set
the RACE CAR image at screen location 148, call the appropriate draw-
ing subroutine, and then send control to another subroutine that begins at
line 125.

The subroutine at line 125 simply prints a prompting message,
‘ENTER’ FOR NEXT FRAME, and then waits for the user to strike
the ENTER key. After that, control returns to the next printing opera-
tion.

Line 115 sets the position of the AIRCRAFT figure to location 150,
calls the appropriate drawing subroutine, and then calls the ENTER
routine again.

7



72 CHAPTER 7

Line 120 is responsible for drawing both figures on the screen. First,
it positions the RACE CAR and calls its drawing subroutine, then it posi-
tions the AIRCRAFT figure and calls its drawing routine.

When line 110 is executed, the RACE CAR appears near the middle
of the screen. Executing line 115 causes the AIRCRAFT to appear near
the middle of the screen. And when line 120 is executed, both pictures ap-
pear at the same time, the RACE CAR near the left side of the screen and
the AIRCRAFT near the right side.

The presentation of these three different frames of graphics is
separated by an ENTER key input. It is a cycling program that shows the
three kinds of displays in succession. Ending the program is a matter of
striking the BREAK key.

The purpose of the project is to demonstrate how a control routine
can use a couple of string-packed images to create a sequence of pictures
on the screen. The job could be done without using string-packed
variables (as described in earlier chapters), but the relatively long drawing
time would create an unpleasant visual effect. Here, the images are drawn
almost instantly.

Incidentally, note the use of a title message in line 25 that is intended
to cover for the delay that is necessary for packing the strings. There is no
way to avoid that initial delay. The best we can do is dress up things to
make the delay seem intentional.

The next project at least suggests a more practical application of
multiple-image sequences.

PACKING WITH STRING$ FUNCTIONS

All of the previous string-packing programs do the packing operation by
reading character codes, one at a time, from a DATA list and con-
catenating them into a string variable. The general routine looks like this:

READ A
F$=F$+ CHR$(A)

The routine is repeated until the string is packed with one full line of
graphic codes. The number of graphic codes to be packed into a variable
has been specified by numeric variable P. Thus if a string variable is to be
packed with nine codes, the general sequence looks like this:

P=9

F$

FOR N=1TO P
READ A
F$=F$+ CHR$(A)
NEXT N



More About String Packing 13

That routine reads nine successive character codes from a DATA list, con-
catenating them into string variable F$.

You have probably noticed, however, that some of the DATA lists in
previous projects often repeat the same character code some number of
times in succession. That situation invites the use of a STRING$ func-
tion, but such a function does not fit the CHR$-oriented packing pro-
cedure being used at the time.

The next project happens to be one that never uses the same
character code less than twice in succession, and sometimes the same
character has to be used 20 times in succession. Writing that program with
a CHR$-oriented packing routine would make it necessary to type long
lines of identical character codes in the DATA listings. A STRINGS$-
packing procedure would be much simpler.

The general procedure for packing a string variable with a STRING$
function looks like this:

READ AB
F$ = F$ + STRINGS(A,B)

The routine reads two successive items from a DATA list; the first is the
number of characters to be printed in succession and the second is the
character code itself. It reads pairs of items from the DATA list, as op-
posed to reading one item at a time, as is the case when CHR$ packing is
used.

Therefore, instead of specifying the number of items to be read and
packed into a string, the STRING$-packing technique must specify the
number of pairs of DATA items to be read. The following routine specifies
five pairs of DATA items—five STRINGS$ functions to be concatenated
into the string variable:

P=5

F$=""

FOR N=1 TO P
READ AB

F$=F$ + STRINGS(A,B)
NEXT N

That routine will read ten items (five pairs) from a DATA list. Each pair is
fit into a STRINGS function and concatenated with the earlier version of
the variable. When the routine is done, string variable F$ will be com-
posed of five concatenated STRINGS$ functions.

When making up the DATA lists, it is important to enter the items
as pairs of numbers: first the number of characters, then the character
code. As an example, look ahead at DATA line 2020 in Listing 7-3:

9,191,2,143,9,191



74 CHAPTER 7

That is a DATA line for a STRINGS$-oriented packing routine. Divided
into pairs of items, the list looks like this:

9,191
2,143
9,191

That means the string variable being packed at the time will be composed
of three STRINGS$ functions:

STRING$(9,191)
STRING$(2,143)
STRING$(9,191)

What would that DATA line look like if you were forced to use a CHR$-
oriented packing procedure? Well, it would have 20 items in it: 9 suc-
cessive 191s, 2 successive 143s, and 9 more 191s. That'’s a lot of typing.
Clearly, there are advantages to the STRING#$-oriented packing idea,
especially when characters are repeated.

PROJECT 7-3

Try the program in Listing 7-3. It uses a STRINGS$-oriented packing pro-
cedure for making up six different die figures as shown in Fig. 7-3; and
once the strings are packed, striking the ENTER key causes a pair of
randomly selected die images to appear on the screen.

10 REM X¥¥ FRGJECT 7-3

15 REM GRAFHIC DICE

20 CLEAR 1024:!DEFSTR FsLICLS

23 FRINT @ 473s"%x DICE GAME Xx%"

30 GOSUR 1000

100 REM X% CONTROL ROUTINE

103 CLSIPRINT @ 896,"STRIKE A& KEY TO ROLL. THE DICE"
110 S$=INKEY$!IF S$="" THEN 110

115 D=1035=RNIK 6)I0N 8 GOSUR S510,520:5330,540,550+5460
120 D=3GI1S=RNI{ 6)I0N 8 GOSUB S510:520+353055405550,560
125 GOTO 110

500 REM X% DRAWING SUEBROUTINE

505 REM ONE

510 FOR N=1 TO &IPRINT @ [+64KN-1sFL(N)5 INEXT MIRETURN
515 REM TWO

G20 FOR N=1 TO 6IFRINT @ DH64XN-1sF20(N)5 INEXT NIRETURN
G523 REH THREE

530 FOR N=1 TO 6IPRINT @ DH64%N-1yFI(N)7 INEXT MIRETURN
535 REM FOUR

540 FOR N=1 TO SIFRINT @ D+O64XN-1sF40N)5 INEXT NIRETURN
548 REM FIVE

G50 FOR N=1 TO &IFRINT @ DHA4*N~-1sFS(N)F INEXT NIRETURN
555 REM SIX

560 FOR N=1 TO 4I1FRINT @ DH64%N~1,FA(N)FINEXT NIRETURN



10090
1005
1019
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
10890
1085
1090
1095
1109
1105
11190
1115
1120
1125
1500
2000
2005
2010
2015
2020
2025
2030
2035
20490
2045
2030
205
2060
2045
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160

REM %X STRING-PACKING SUBROUTINE

REM

F=1{GOSUER
P=31{GOSUR

REM

F=11GOSUR 150031F2C(1)
P=11GOSUR 1500IF2(3)
F=31G0OSUB 1500IF2(5)

REM

F=1{GOBUR 15005F3(1)
F=31GOSUR 15003F3(3)
F=33GOSUR 15003IF3(5)

REM

F=11GOSUR 150031F4(1)=
F=13GOSUR 15001F4(3)=
F=51G08UB 1500IF4(5)=

REM

P=11GOSUR 15003F3( 1)
P=3{GOSUR 1300IF5(3)
P=51GO8UB 15003IF3(3)

REM

P=11COSUR 135003F&6C(1)
P=516G0SUR 15003IF 643 )
F=531608UB 15001F6(5)

ONE

TWO

i H

L
L
THREE
L
L
L

B0

FOUR

FIVE

51X

RETURN
L=""{FOR N=1 TO PIREAD AyEIL=L4+STRINGSCAsBIINEXT NIRETURN

REM

REM

DATA
[ATA
DATA
DATA
DATA
DATA
REM

DATA
naTa

5 DATA

DATA
DATA
IATA
REM

DATA
DATA
DATA
aTa
DATA
LATA
REM

aTA
DATA
DATA
DATH
DATA
DATA
REM

nATA
LATA
DATA

%% DATA LISTINGS
ONE
20,188
205191
9191+27143595191
2+191+2+188-9,191
20,191
209143
TWO
20,188
3y19192917651551791
205191
205191
15,191525,131,3-191
205143
THREE
20,188
3519125131 51595191
Py1719251435,95191
Pel910,241885951791
1521719251313 5191
205143
FOUR
20,188

15003F1( 1 )=LiF=11608UR 1500IF1(Z
15003F1( 3)=L{F=316068UR 15001F 1
F=1:GOSUR 1500tF1(5)=LiF=11G0O8UR 15003F1(

L 1P=3iBOSUR 15001F2(2
tF
tF

=11G0SUR 15002
=11GOBUER 15002 F“(

tP= g
1P=31GOSUR 1500 3F 3¢
== (¢
=53¢ 2
=11GOSUE 1500:iF4(4
=1t

=5 =
=3 L GOSUR 15001F3(4 )=
=14 =

[0 S (N ]
e

[ ]

i

U\-Pr.,
[

ZI1GOSUR 15001F3

RS
[ fiod
rer ~rr e

1

[s N (8

11608UR 1300:F3

GOSUR 1300 1F4(

T
Hof b
-

LOSUR 1500:F4C 6
tGOSUR 18003IF3(2)
GOSUR 1500IF5(6)
GOSUE 1S001F6(

: 2)=
{GOSUE 15003F6(4 )=
: )=

L
L
L
L
L
GOSUE 15001F6(6 =L

35191925176 5105191 5251746935191

204191
209191
Zyp191s 2913110519192
205143
FIVE
205188

2y 1319351791

3919120176510, 19152:176+35191

1912514359191

75

{cont.)



2165
2170
2173
2180
2185
219¢
2195
2200
2205

2210

DATA 9179152518857, 191

DATA 3519125131109 191525131,35191
DATA 205143

REM SIX

LATA 20,188

DATE 3191529176105 171:2,176535191
BATA 319152y 1435105171:2-143,35191
DATA 3519212518821 0,1%1,2,188+35191
DATA 3+191+s251315105191 25131535191
DATA 20,143

LISTING 7-3 Programming for the Graphic Dice game in Project 7-3

This STRINGS$-oriented packing program uses the same five basic
sections that are used for the CHR$ versions; what is more, the sections
perform the same general functions.

Initialization routine (lines 20-30)

CLEAR 1024 bytes for the strings.

Define any variable beginning with F or L as a string variable.
Clear the screen and print a title message to occupy matters while
the strings are being packed.

Call the string-packing subroutine.

String-packing subroutine (lines 1010-1125)

DATA

Set variable P equal to the number of STRINGS$ functions to be
packed into a given line. (When using CHRS$ packing, P is set to
the number of CHR$ functions to be packed into a line.)

Call the one-line packing routine at line 1500. That line has the
same general form as the one used in the CHR$ versions; the only
difference is that it reads DATA items two at a time and uses
them as the elements of concatenated STRINGS$ functions.

Set the string variable that indicates the figure number and line
number equal to the packed string variable, L, returned from line
1500. In this particular example the string variables take the gen-
eral form Fs(n), where s is the die figure (one dot, two dots, etc.)
and n is the graphic line number. Thus a variable such as F3(5) can
be interpreted as the string variable for plotting the fifth line in a
die figure showing a score of 3.

listings (lines 2010-2210)

Show the pairs of numbers required for the STRINGS$ func-
tions—number of characters followed by the character code.



77




78 CHAPTER 7
Drawing subroutines (lines 510-560)

¢ SetupaFOR ... NEXTloop for scanning the six lines used for all
of the figures.

* PRINT the lines, using a specified set of string variables for that
particular die figure and a displacement value, D.

Control routine (lines 105-125)

¢ PRINT a prompting message.

e Wait for a keystroke (line 110).

* Set the displacement value for the left-hand die, pick its random
value, and call the corresponding drawing subroutine (line 115).

* Set the displacement value for the right-hand die, pick its random
value, and call the corresponding drawing subroutine (line 120).

¢ Loop back up to line 110 to wait for another keystroke.

This program format is appropriate for drawing images and se-
quences of images that contain a relatively large number of repeated
character codes. The program could be simplified a great deal, but the
simplification would be based on the simple nature of the figures
themselves, and doing so would confuse the purpose of the project—to

demonstrate how to set up a general-purpose graphics program that uses
STRINGS packing.

PROJECT 7-4

Use STRINGS packing to draw the FLAMING CANDLE in Fig. 4-2. See
the suggested program in Listing 7-4.

10 REM %% PROJECT 7-4

15 REM FLAMING CANDLE, V.2

20 REM %% INITIALIZATION ROUTINE

25 CLEAR 128IDEFSTR FoL3iDIM FU12)

30 CLS!PRINT @ 470,"%¥ FLAMING CANDLE *x"

35 GOSUER 1000

40 FOR T=1 TO 1Q0INEXT T

100 REM %% CONTROL ROUTINE

105 CLS

119 D=220:1GOSUB 5035

115 6070 115

500 REM ¥¥ DRAWING SUBROUTINE

505 FOR N=1 TO 121FRINT @ D+E4RNFONDS INEXT N
510 RETURN

1000 REM Xk STRING-FACKING SUBROUTINE

1005 P=21GOSUR 1500F(1)=LF=01G08UR 1300iF({2)=L
1010 F=41GOSUR 1500IF(3)=LIiP=21C608UR 1500IF(4)=0
1015 FP=51GOBUK 15001F(5)=LIiP=21C0BUE 1500 F(a) L.
1020 P=21GOSUER 1500IF(7 )=LIP=31GOSUER 15002F8)=L



1025 P=21G0SUR 1500IF(9)=
1030 F=13G0OSUB 19001F(11)
1035 RETURN

1500 L=""{FOR N=1 T0O FIREAD AsBIL=L+STRINGH(AsRBIINEXT NIRETURN
2000 REM %X DATA LISTINGS

2005 DATA 121962149176

2010 DATA 1,12851,1B4,15190+2+191515148

2015 DATA 15128519175, 3+171214133

2020 DATA 15195515147

2025 NATA 1s191910188s1r176919177 19144

2030 NATA 67191515149

2035 UATA 72191915149

2040 UATA 621912151059 ,12149

2050 DATA 67191915133

2055 [ATA 69191

2060 [ATA 65191

2065 DATA 65171

LiF=11GOSUR 13003F{ 10 =L
=03 6

LiF=11G0SUE 15000F{ 12 )=L

LISTING 7-4 Programming for a STRINGS$-packing version of Flaming
Candle, Project 7-4

The figure uses a number of 191s in succession, thus lending itself to
STRINGS$-packing operations. Note the instances where a character ap-
pears just one time; the general expression in that case is STRING$(1,c),
where c is the character code.

Wouldn't it be nice if there were a string-packing program that could
deal with both CHR$ and STRINGS functions in an effective fashion?
Well, go on to the next section of this chapter.

STRING-PACKING COMBINATIONS OF CHRS
AND STRING$ FUNCTIONS

It is possible to write programs that pack strings by means of con-
catenating CHR$ functions or STRINGS$ functions. Unfortunately,
neither method is wholly appropriate to a vast majority of figures you will
ever want to draw. In reality, most figures call for using combinations of
CHRS and STRINGS$ packing. The next set of projects demonstrates how
this can be done.

Recall that a DATA listing for a CHR$ packing routine is composed
of elements that represent nothing but the series of character codes. There
is a one-for-one correspondence between the number of elements in the
DATA list and the number of characters printed onto the screen. When
the STRINGS-packing routines are used, the DATA listings are organ-
ized into pairs of numbers; the first indicates how many characters, are to
be printed in succession and the second specifies the character to be
printed.

The key to writing a program that can handle both CHR$ and
STRINGS$ packing is a flag, or special symbol, that can be inserted into

79



80 CHAPTER 7

the DATA listings to indicate whether a CHR$ or STRINGS$ function is
to be applied. For our purposes, the function-indicating flag will be a
minus sign inserted in front of the first of the two elements of a STRING$
function. Thus, this combination of elements in a DATA listing:

~6,191

indicates the application of a STRING$(6,191) function—six graphic 191s
in succession.

The following program structure shows how the system can
distinguish the application of a STRING$ function from a CHR$ function
during the course of the string-packing operation:

READ ELEMENT A
IF A >0 THEN

READ ELEMENT B

L$ = L%+ STRING$(ABS(A),B)
ELSE L$=L$+ CHRS$(A)

Literally, the structure says this: Read an element in the DATA list,
assigning its value to variable A. If A is negative, then read the next ele-
ment in the DATA list and assign it to variable B. Concatenate the string
variable being packed with STRINGS$(ABS(A),B). (It is necessary to use
the ABS function to get rid of the minus sign, something a STRING$
function cannot handle.) However, if value A is not negative, concatenate
the string being packed with CHR$(A).

Thus a DATA listing that uses both STRING$ and CHR$ functions
will include both negative and positive numbers. The negative numbers
indicate:

1. That a STRINGS function is to be used.

2. That the absolute value of the negative number represents the
number of characters to be printed in succession.

3. That the number following the negative number is the character
code for the STRINGS$ function.

All of the string-packing subroutines cited thus far use a variable P
toindicate the number of CHR$ or STRINGS$ functions to be included in a
given string variable. You, the programmer, set the value of P, based on
the number of elements or pairs of elements in the corresponding DATA
list. That matter of counting things in the DATA list in order to set the
value of P becomes rather tricky when you are using combinations of
CHRS$ and STRINGS functions, so it is necessary to introduce an entirely



More About String Packing 81

different technique for keeping track of how many DATA items ought to
be included in a given string variable.

Eliminating the need for counting DATA items yourself is a matter
of introducing two additional flag items: one that indicates the end of a
string that is being packed, and another that indicates the end of the last
string to be packed. Here we use a zero to mark the end of a string and
numeral 1 to indicate the end of the last string in the figure.

Consider the following examples from a DATA listing:

DATA —-2,176,191,148,0
DATA 144,-6,191,1

The first data line ends with a zero. That zero indicates the end of a given
line in a figure but not the end of the last line. In that particular case,
the line packs a string variable with STRING#$(2,176) CHR$(191)
CHR$(148). The second DATA line ends with a 1. That indicates the end
of thelast string variable in the program, a string composed of CHR$(144)
STRING$(6,191).

Look ahead to the string-packing subroutine (lines 1005 through
1035) in Listing 7-5 to see how this packing scheme works.

Variable L in line 1005 is set to 1. That numeric variable is used as a
line counter: when the routine is done, it will indicate the number of lines
in the figure. Then see how the line being packed is set to the null string in
program line 1010.

Line 1015 in the program reads a DATA element, assigning it to
variable A. After that, the routine goes through a series of numerical
magnitude comparisons:

o If A is greater than 1, the DATA item is treated as a character
code that is to be packed as a CHRS$ function.

e If A is less than zero (a negative number), the program reads the
next item in the DATA list, assigns it to variable B, and packs the
string with a STRINGS$ function.

¢ If A isequalto zero, it is time to end the string that is currently be-
ing packed and start a new one. Note in program line 1030 that the
line counter, L, is incremented and program control is returned to
line 1010, where the next line-string is nulled.

¢ If A is equal to 1, it means the packing job is done. Program line
1035 responds to that situation by returning program control to
the control routine—to line 40 in this case.

The DATA listings in this case are altered with a negative number to
indicate the application of the STRINGS$ function, with a zero to indicate



PROJECT 7-5

Rewrite the FLAMING CANDLE program to take advantage of the
ability to pack both CHR$ and STRINGS functions. See the suggested
result in Listing 7-5.

10 REM X%k PROJECT 7-5

15 REM FLAMING CANDLE:, V.3

20 REM %% INITIALIZATION ROUTINE

25 CLEAR 128IDEFSTR FIDIM F(12)

30 CLSIFRINT @ 470,"%%k FLAMING CANDLE %x"
35 GOSUBR 1009

40 FOR T=1 TO 100INEXT T

100 REM X% CONTROL ROUTINE

105 CLS

110 D=2203G0BUR 505

115 GOTO 1135

500 REM %% DRAWING SUBRROUTINE

505 FOR N=1 TO 12!FPRINT @ D+64XN,FINIFINEXT N
510 RETURN

1000 REM %X STRING-FACKING SUBROUTINE
1005 L=1

1010 F(L)=""

10135 READ A

1020 IF A>1 THEN FIL)I=F(L)+CHR3$(AIIGCOTO 1015
1025 IF A<0 THEN READ RIF(LI=F(LISTRINGH(AERS(A)RIIGOTO 1015
1030 IF A=0 THEN L=L+1:6070 1010

1035 IF A=1 THEN RETURN

2000 REM %X DATA LISTINGS

2005 DATA 196517650

2010 DATA 128,1845190+-251715148+0

2015 DATA 1285175:-351915133:0

2020 DATA 195:14750

2025 DATA 191,18851762177 2144590

2030 DATA ~65191+14950

2035 DATA ~72191514950

2040 DATA ~67191+159514940

2045 DATA ~62191513350

2050 DATA —-6519140

2055 DATA -6519140

2060 DATA ~6919151

LISTING 7-5 Programming for Flaming Candle, using a combination of
CHRS$ and STRINGS packing, Project 7-5

the end of a line string, and with a numeral 1 to indicate the end of the last
line of the picture.

The string-packing subroutine is also modified to interpret the data
as it is presented in this sort of DATA listing.

The initialization routine, control routine, and drawing subroutines
do not have to be significantly changed in order to use the combinations of
CHR$ and STRINGS$ functions.

The main advantage of the scheme is that it reduces the amount of
data in the DATA listings. You can see some benefit by comparing this
DATA listing with the one for the same figure in Listing 7-4. More exten-



More About String Packing

83

sive drawings would reflect a much greater reduction in size of the DATA
listings. If nothing else, this saves you some programming time.

PROJECT 7-6

10 R
15 C
20 C
25 6
100

105

110

115

500

505

10090
1005
10190
1015
1020
1025
10390
1035
2000
2005
2010
2015
2020
2025
2030
2035
2049
2045
2050
2055
2060
2045
20790
2075
2080
2085
2090
2095
2100
2103
2119
2115

2120

Listing 7-6 represents a rather extensive graphic routine that uses
combined CHR$ and STRINGS$ functions for packing a full screen of
string-packed variables. The image is that of a cartoon black caton a
white background. Give it a try; | think you will be pleased with the
results and | hope it will challenge you to do some imaginative work of

this sort. )

EM ¥k PROJECT 7-6

LEAR 20483DEFSTR FIiDIM F(15)

LSIFRINT @ 537,"%k KRAZY KAT ¥x"

OSUR 1000

REM *X CONTROL ROUTINE

CLS

GOSUB 505

60TO 115

REM *x DRAWING SURROUTINE

FOR N=1 TO LIPRINT F(N)3INEXT NIRETURN
REM %k STRING-PACKING SUBROUTINE
L=1
FCL)=""
READ A
IF A»1 THEN F(L)=F(L)4CHR${A)IGOTO 1015
IF A<0 THEN READ BIF(L)=F(L)+STRING$(AES(A)sE)IGOTO 1015
IF A=0 THEN L=L+1:GOTO 1010

IF A=1 THEN RETURN
REM %X DATA LISTS
REM LINE 1
DATA ~64519150

REM LINE 2
DATA ~64519150

REM LINE 3

DATA -185191:135,182,51755~19519151595135,188,155,-205191+0
REM LINE 4

DATA ~-175191513371705,191518951805131,143,191,178:175,159+186
DATA ~6519115351919167 219191355184y -2519151492-204191+0
REM LINE 5

DATA —-175191s14451707-3,191,14851945179»-25178s147 962131
DBATA 1791445131129 51365-3519151495~20,19150

REM LINE &

DATA -17+19151495138,135,129+12851602190,-5+191

DATA 1895194515051 90y-451915180+1945191+143516F5-20191+0
REM LINE 7

DATA ~-7+191:159,-85,191+159+12991967~45191 51595143

DATA ~2519151945191514351759-4,191+149519651715~-9,191

DATA 143:167y185+-72191490

REM LINE B

DATA ~-8s171,18251795-25s1435175y~25191+1895198,130-143,175
DATA 145,128,1295,1385129+1945129,1305128,186+1599-25143
DBATA 19751905-2,1915143516791795185y-3+1885~-10s171s0

REM LINE 9

(cont.)



2125
2130
2135
2140
2145
2150
2155
2160
2179
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220

2225

DATA
DATA
REM

DATA
DATA
DATA
REM

DATA
REM

DATA
DATA
DATA
REM

DATA
DATA
DATA
REM

DATA
REM

DATA

-12,191,189,188,1546,132,203+5168s-45191,189,203
131+1285140,-17,19150

LINE 1¢
~4919191435-35179+s~5,188,148,2025160,193
139,-25143+13521299194+14452035168-188,-45179:-35143
171+~73519150

LINE 11
~Zyi91s1899s-95191518152025160513352007150,204+1869-16119140

LINE 12
~102191 914351679179+ -35,188y~5517651942152,129
128,184,188,16751915159-131+1945130,1645199
-25176219151825179214351755-142191+0

LINE 13
~69191+159,179y185,188,-13,191,188,180s1425 143
142+143,185,-5,188+190+-135191,189,188,179, 175
-11919150

LINE 14
~647191 50

LINE 15
-b649191 51

LISTING 7-6 Programming for Krazy Kat, Project 7-6



Customized i

CHaracrer Sers e

The TRS-80 includes two character sets: the alphanumerics and the
special graphics symbols. There are times, though, when a programmer
wishes there were some alternatives available. How about a character set
for playing-card games? Or one that generates oversized, black-on-white
alphanumerics? Or one that generates a foreign alphabet such as the Rus-
sian, Hebrew, Greek, or Chinese?

The techniques already described in this book are adequate for pro-
ducing one-of-a-kind arrangements of special characters and symbols. You
can, for example, create a computerized sign that offers a message com-
posed of oversized English letters, numerals, and punctuation marks. That
is a simple matter of laying out the message on a video worksheet, doing a
line-by-line character analysis, and then writing a string-packing program
that draws the message on the screen for you. If you wish, you can use se-
quences of these full-screen, custom messages to create the effect of flip-
ping panels of titles and messages.

That isn’t the subject of this chapter, however. Rather, it is to create

85



86 CHAPTER 8

an entire character set, assign some sort of coding to each character, then
write control routines that let you select and arrange the characters that
you havemade available. Ineffect, theideaistoadd a customized character
generator to your TRS-80 system.

The emphasis of the discussion is on constructing the character sets
and their codes. You will find three different examples of custom character
sets and applications offered here, but in general, it is up to you to invent
your own applications of these character sets and, better yet, devise your
own character sets to suit a wide range of applications.

A CHARACTER SET FOR CARD GAMES

Fig. 8-1 shows the original worksheet version of a customized character
set that can be used for card games. The 5 x 2 graphics format makes it
possible to create reasonable facsimiles of face values 2 through A plus the
four standard suit symbols. Using a larger graphics format would make it
possible to design even clearer and more attractive symbols, but then
there would be the problem of fitting a useful number of them onto the
screen at one time.

At any rate, the procedure is to decide on a reasonable character size,
lay out all the characters onto a video worksheet, and do a character-by-

FIGURE 8-1 Worksheet version of a playing-card character set



wusiomizea vnaracter oets (<7}

character, line-by-line analysis of the pixel graphics needed for each
custom character.

The next step is to create a DATA listing for all of those custom
characters.

PROJECT 8-1

Create a DATA list for the custom card-playing characters shown in
Fig. 8-1. Use a zero to indicate the end of a line and a 1 to indicate the
end of the DATA listing. See the suggested routine in Listing 8-1.

10 REM %% PROJECT 8-1

15 REM FLAYING-CARI GRAFHICS SET

20 T=0

25 READ AIT=T+A

30 IF A<x1l THEN 25

35 IF T=23971 THEN PRINT "OK"I(DELETE 10-40

40 FRINT "DATA ERROR" IENI

5000 REM %% DATA LISTINGS

5002 DATA 138:1639179187 133202138y 141y~251409 13240
003 DATA 138,-2,131,187 9132405 1385-251405142,12790
G004 DATA 160519091799 1919144409-3,1285143512840

3005 DATA 1702183:-2:17F212950:136v~271405142,12940
5006 DATA 168:1210-2017951285091309 14351405 143512940
G007 DATA 138y~2-1312187+133505-25128+142,129,12850
5008 [ATA 136:1835179-187 51325051305 1411405142, 12950
5009 DATA 1369191179191 148509 1285~251405143512950
5010 NATA 1705149190417 5,148,05138513351395143,12950
G011 DATA 12851305171 21519129:021305143,142,133,12850
G012 DATA 16091588131, 173-1449 012851395140, 135,13250
5013 DATA 170,181,158 129512850,138»133,139,132+128+0
5014 DATA 160,190514371B95 144051385135y 1315139»133+¢
S015 DATA 16051845191 01805144,0y128y139»191,13%512840
50146 DATA 1920,191518851715189:0» 13051435191 2143512950
G017 DATA 160+14651915161514450,132:135,1512137+1350
5018 DATA 160,184,191 y1805144,051395135,19151392135+0
5019 DATA 1L

LISTING 8-1 DATA listing and checksum routine for the playing-card set
in Project 8-1

The DATA listing in this case begins at line 5000. In order to main-
tain a reasonable level of consistency, I have used the last two digits in the
DATA line numbers to indicate which character is represented. Line 5002,
for example, carries the graphic codes for face value 2, 5010 has the codes
for face value 10, and lines 5015 through 5018 hold the graphics for the
suit values diamond, heart, club and spade, respectively.

Exactly how this data is packed and applied isn’t important at this
time. The idea here is to get the character information into the computer.
Applying that information is a matter that is left for later consideration.

In the event any reader might want to use this particular character
set, I have included a short checksum routine at program lines 20 through



88 CHAPTER 8

40. The purpose of that routine is to make sure you have made no typing
errors while entering the DATA listings. There are a lot of boring numbers
in that list, and the chances of making an error are quite high.

After you have entered Listing 8-1 into your system, do a RUN. If
there is an error in your DATA listing, you will get the message from pro-
gram line 40;: DATA ERROR. That being the case, you should carefully
double-check the listing against your own, making the necessary correc-
tions. But if you have entered the DATA as it is shown here, line 35 will
print an OK message and immediately delete the checksum routine, leav-
ing just lines 5000 through 5019 intact.

How does that checksum routine work? It’s simple, really. When I
set up the characters and viewed them on the screen, I made a couple of
modifications and then wrote a short program that summed all the DATA
elements. In this case, the sum happens to be 23971; that’s the checksum
that is compared with variable T in line 35. If you make any typing errors
while entering that DATA listing into your computer, the chances of hav-
ing the numbers add up to 23971 are astronomically small. However, if
you have done a perfect job (or have corrected any errors in your own
listing), the numbers will match perfectly. The checksum routine, you see,
adds up the values of the DATA items in your version of the listing and
compares the results with my own version.

When you are putting together your own character sets, a checksum
routine isn’t very meaningful. It is included here only for the benefit of
those who might want to use this particular one for the next couple of pro-
jects and, indeed, card games of their own design.

The point is to create a DATA listing that can stand alone. At this
time, nothing can or should be done with it. It is supposed to be a separate
entity that can be used in any number of ways at some later time.

To simplify matters later on, it is necessary to save the raw DATA
listing on cassette tape or disk. So when you need the characters for a par-
ticular program, you can begin the programming by loading the character
DATA first, then writing all the other programming around it. If, for in-
stance, you plan to work out Projects 8-2 and 8-3, you should run Listing
8-1 until it comes out OK, then save the DATA listing on tape or disk.

When preparing a custom character set, you must double-check the
appearance of the characters and the accuracy of the DATA listings by
viewing those characters on the screen.

PROJECT 8-2

With the DATA listings from Listing 8-1 loaded into the computer, ex-
pand the program to include a string-packing, initialization, and control
routine that lets you view the characters on the screen. See Listing
8-2.



10 R
18 R
20 C
28 1
30 C
100

103

119

115

120

125

1000
1005
1010
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
5000
5002
5003
5004
5005
5006
5007
5008
5009
S010
5011
5012
5013
5014
5015
5016
G017
5018
5019

LISTING 8-2 Programming for viewing the playing-card characters, Pro-

EM %% FROJECT 8-2

EM VIEW THE CARD CHARACTERS

LEAR 1024iDEFSTR C

IM C{18,2)

LSIFRINT "NOW PACKING .+.." {GOSUR 4000

REM %% CONTROL ROUTINE

CLS! FRINT @ 896y"STRIKE A KEY TO SEE THE CHARACTERSY

FOR N=0 T0O 16

C=INKEY$:IF C="" THEN 113

0=41531GOSUR 1000

NEXT NiGOTO 110
REM X% DRAWING SURROUTINES

PRINT @ DyCONsODFIFRINT B DI+64sCINs1)5
RETURN
REM XX STRING-FPACKING SUBROUTINE
N=0
L=0
CONgL)=""
READ A
IF A1 THEN CONsL)=CINsLI+CHR$CAIIGOTO 4020
IF A=0. ANII L=0 THEN L=131GOT0 4015
IF a=0 AND L=1 THEN N=N+1160TOQ 4010
IF A<0 THEN READ RICONsLI=CONsLISTRINGH( ARS{A4)sK)IG0TO
RETURN
REM Xk DATA LISTINGS
DATA 138516351795187 5133501385141+ -2,140¢13250
DATA 138y~2+131+187513270+138y-2+s1405142512%7+0
DATA 16051905179 91915144505,-3-1285,1435128:0

DATA 170,1839-29177212F90 1369 -22140,1425129490
TATA 16851912y 179v128,09130214391402143+12990
DATA 138s-2+13191879133y0,~2,1285142,12991284+0
DATA 136+18341799187 9132501305141 51402142912940
DATA 136+1915179+1915148505128,-2514002143+12950
DATA 170514951905 1759 1485051381335 1392143,12%940
DATA 128s13051719101 5129091305143 5142,1335 12840
DATA 1605158y1319173-14450,12851395140135213250
DATA 170,181,158,1292128,0,138,1335139»132+12850
DATA 1601190y1435189914450,1385135,131513%25133+0
DATA 160,184,191 91805144051 28513951924»135y12840
LIATA 1905191518851921,18950y1305143y191143,12%,0
DATA 16051462 19191615144505132135,191913%9135,0
[ATA 160y1845191+180,14450,13951352121 51391350
DATA 1

ject 8-2

40620

If the DATA listing from Listing 8-1 is already resident in your com-
puter, or if you have saved that listing and can load it from tape or disk,
the expanded listing won’t be as difficult to enter as it might appear. The
hard part has already been done.

In this case, the string-packing subroutine (program lines 4000
through 4045) pack the special card-playing characters into string arrays
C(0,L) through C(16,L), where L is the two line numbers—0 and 1—for the
characters. The custom characters and their string variables are sum-
marized in Table 8-1.

The initialization routine in program lines 20-30 sets aside a

89



TABLE 8-1

STRING-VARIABLE ASSIGNMENTS FOR THE
PLAYING-CARD CHARACTER SET

Character Variable Line
2 C(0,0) 0
C(,1) 1
3 C(1,0) 0
Cc(1,1) 1
4 C(2,0) 0
C2,1) 1
5 C(3,0) 0
C(3,1) 1
6 C(4,0) 0
C@4,1 1
7 C(5,0) 0
C(5,1) 1
8 C(6,0) 0
C(6,1) 1
9 C(7,0) 0
C(@@,1) 1
10 C(8,0) 0
C(8,1) 1
J C(9,0) 0
C(9,1) 1
Q C(10 0) 0
C(10,1) 1
K C(11,0) 0
c(11,1) 1
A C(12,0) 0
C(12,1) 1
diamond C(13,0) 0
C(13,1) 1
heart C(14,0) 0
C(14,1) 1
club C(15,0) 0
C(15,1) 1
spade C(16,0) 0
Cc(16,1) 1

generous amount of string space, defines any variable beginning with C as
a string variable, and dimensions the character arrays.

The control routine (lines 100 through 125) lets you view each of the
special characters, one at a time, by striking any key on the keyboard.
Line 120 is responsible for setting a displacement value that situates the
characters near the middle of the screen and for calling the drawing
subroutine. The control routine cycles through all 16 characters endlessly,
so the best way to terminate is with the BREAK key.

When the program finally calls the drawing subroutine (program

90



Customized Character sets g1

lines 1005 and 1010), the character to be drawn has already been selected
and positioned. The drawing subroutine does little more than print the
two strings that define the selected character.

Through the process of entering Listing 8-2 into the computer, you
have, in effect, appended a general-purpose string-packing and drawing
subroutine to the custom character codes. You will thus find it helpful in
the long run to save lines 1000 through the end of the program on tape or
disk for future use. As suggested in earlier chapters, the application of
string graphics is most often determined by the nature of the control
routine; the drawing and string-packing subroutines and the DATA
listings remain unchanged through a wide spectrum of possible control
applications. Thus by saving lines 1000 through the DATA listing, you
have the foundation for constructing any card game you wish; it’s a mat-
ter of using those sections in conjunction with an appropriate control and
initialization routine. The next project is a case in point.

PROJECT 8-~3

Use the custom card-playing character set to write a simple two-
player, five-card poker game. Listing 8-3 is one example.

10 REM %X PROJECT 8-3

15 REM FOKER HANDS

20 CLEAR 10241DEFSTR C

25 DIM CC18,2)100IM SCC12516)

30 CLSIPRINT @ 408»"%% POKER HANDS #Xx" (GOSUE 4000

35 CLS

40 INPUT "ENTER FIRST PLAYER’S NAME"3iF1$

45 IF LEN(FL14)>12 THEN PRINT "NAME IS TOO LONG ... TRY AGAIN":
FRINTIGOTO 40

50 CLS

55 INFUT "ENTER SECOND FLAYER’S NAME" F2%

60 IF LEN(P2$%)>12 THEN PRINT "NAME IS T0O LONG ... TRY AGAIN"!
PRINTIGOTO S5

100 REM ¥¥ CONTROL ROUTINE

103 CLS

110 FRINT "DEALER IS SHUFFLING" IFOR T=0 TO 1000 INEXT TICLS

115 FOR NC=0 T0 4!FOR FN=0 TO 1:SCONCsPN)I=0INEXT FNsNC

120 PRINT @ 192,P1$IPRINT @ 704,F2$IFRINT € 44B8,STRINGH( 64,140)

125 FOR NC=0 TO 4:FOR PN=0 TO 1

130 NU=RND(13)~13FVU=RNI(4)+121IF SCONVsFV)=1 THEN 130

135 SCONVsFV)=1

140 N=NVID=79+10%kNCH512EPNIGOSUR 1000

145 N=FVUID=D+192:G0SUER 1000

150 NEXT FNsNC

155 FRINT 8 960y"STRIKE “ENTER’ TO SHUFFLE AND DEAL AGAIN ..."j5

160 C=INKEY$IIF C="" THEN 160 ELBE 105

1000 REM k% DRAWING SUBROUTINES

1005 PRINT @ DsCONsO)FIPRINT @ D+64,CINys1)s

1010 RETURN

4000 REM %X STRING-PACKING SUBROUTINE

4005 N=0

{cont.)



4010 L=0

4015 C(NsL)=""

4020 READ A

4025 IF Ax>1 THEN CONsL)=CONsL MHCHR$(AIIGOTO 4020

4030 IF A=0 AND L=0 THEN L=1:1G0OTO 4015

4035 IF A=0 AND L=1 THEN N=N+11G0OTO 4010

4040 IF AZ0 THEN READ BIC(N:L)=CINsLI+STRINGH{ARS(A)sRITEOTO 4020
4045 RETURN

5000 REM X% DATA LISTINGS

5002 DATA 138,1632179,187»133505138:,1415-25140213250
5003 DATA 138,-2,131218751325051385-2+1405142512990
5004 DATA 1605190:17921919144509-3,128,143,128+0

5005 DATA 1705183525179 1295051365-251405142,12%,90
5006 DATA 168+191,-2,17951285051307143,1405143,129+0
5007 DATA 138+~251315187913350,-2,128+142,1295128+0
5008 [DATA 136,18351795187:132509130,1415140-142512920
5009 DATA 136+1915179+191,14850+1285-2,140,1435129+0
5010 [ATA 170149190517 5514850,1385,1335139»143,129+0
5011 UATA 128,130-17191501512950513051435142-,1335128+0
5012 DATA 160515813191 73514450512851395140-135,13250
5013 DATA 1705181,158,12%9,12850,138,133513%951325128+0
5014 DATA 160+190+143,189,14450,138,135,1315139513350
5015 [DATA 160s184,1915180:144505128,139:171»1355128:0
5016 DATA 190,191:1885,191,189,0,130,143,191,143+129,0
5017 DATA 1601465191 5161514450,1395135179151392135»0
5018 DATA 160,1845191,180+144505139513521915139213550
5019 DATA 1

LISTING 8-3 Programming for poker hands, Project 8-3

First notice that the drawing subroutine, string-packing subroutine,
and DATA listings are identical to those used in the previous project. Fur-
thermore, the DATA listing, beginning at line 5000, is identical to the
original one devised as part of Project 8-1. The configuration of the
special card-playing symbols, the technique for packing them into string
variables, and the procedure for drawing them onto the screen remain un-
changed. Only the initialization and control routines have to be revised in
order to suit the needs of a particular kind of card game.

This is a simple card game. It deals five cards to two different
players. The player with the best poker hand is the winner. That’s all. The
purpose of the project is to illustrate the application of the custom card-
playing graphics set, not to put together a razzle-dazzle computerized
card game. That’s up to you.

Run the program for a while to see how it works. After doing that,
you will be in a better position to figure out how the control routine does
its task.

A DOUBLE-SIZED ALPHANUMERIC SET

Fig. 8-2 shows the worksheet drawings for a complete, 59-character fam-
ily of keyboard alphanumerics. They fit a 5 X 6 character-space format
and are thus about twice the size of the same characters from the



PROJECT 8-4

Type in the ALPHANUMERIC CHARACTER SET shown in Listing 8-4,
run it, and troubleshoot it if necessary. Save the results on tape or disk
for future use.

10 REM XX FROJECT 8-4

15 REM ALFHANUMERIC CHARACTER SET

20 T=0

23 READ AlIT=T+A

30 IF AUx1 THEN 25

35 IF T=64800 THEN PRINT "OK"IDELETE 10-40

40 PRINT "DATA ERROR" 1END

5000 DATA ~4919150y~4519140

5001 DATA 1915149+170519150+191,1835187,191+0
5002 DATA 18921902189:190+05 4419140

G003 DATA 17951625145-17%950,188,184,180,188+0
5004 DATA 12B,14051362140205-2517991789176:0
5005 DATA 188,159,163,188,05179518851915179:0
5006 DATA 15351405187 51755051825 17951805191+0
5007 DATA 1915189,1865191509-4,19150

5008 DATA 13151845,190519150,188,178+187,1%1+0
5009 DATA 191+18%9:180513150,121+183,177,188+0
3010 DATA 1345129513051 37:05185+180,184,182+50
5011 DATA 143,133,138,143,0,191,181,186-1%9150
5012 DATA —4,191,505180,-35191,0

5013 DATA ~4+14350r-4+19140

5014 DATA ~45191+051795-3519150

5015 DATA 191,1595185+190+0517951905-25191+0
5016 LATA 1675~25188515550,18%y~2y1795190+0
5017 DATA 18351885128,191,0,18351795176917%950
5018 DATA 1845-25,14051769071769-3+1795¢

S5019 DATA 1845-2,140516050,178,-25179217690
5020 DATA 1285143,128514350:,-2,191,176519150
5021 DATA 128s-2+1405174509-351795184,50

S022 DATA 128s-3714350218051785179917640

5023 DATA 184,188,1565160505191,18351844191+0
5024 DATA 145,~2,140,16250+180,-2,179+184590
S025 DATA 145+-2+1405134405-34191917650

5026 DATA 1915183+1875191:051915189»190y191+0
5027 DATA 191+1835187+19190,191+189+186+191+0
5028 DATA 143,1795188+191505191+1885179219150
5029 DATA —4217950,-45188+0

5030 DATA 191,188,1799143,0+191,179:188519150
5031 DATA 185,188,140,17850+s~2,19151795191+0
5032 DATA 183,1405188,155505189:179,1825190,0
5033 DATA 1355177517891 3950+1765-2y188,17650
5034 DATA 1285-25140+1625051769~2,179518440
5035 DATA 129+-24188+1805051805-2517%917750
5036 [ATA 128,51885180513990517651795177 21300
5037 DATA 128+-2:14051882051765-3:17750

5038 DATA 128y-2y1405188,051765~39191+0

5039 DATA 129515651409 172+05180+~2y179+18450
5040 DATA 128+-2¢14351285051769~25191L517650
5041 DATA 191,149y170:191505191518151865191+0
G042 DATA -32191,1285051805~2+17951844p

S043 DATA 128+14351795188505176,1915188¢17%990
S044 DATA 128-391915091765-3517950

5045 DATA 12851555167 9128+05176y-2+191517640

{cont)

93



5046 DATA 1285148,175512850517651919178217640
5047 DATA 129:-25188+130+0+180--25179218440
5048 DATA 128s~2514051625091769~32191+0

5049 DATA 167-25188515520,189y-2,179518250
5050 DATA 128s-2+140,1629091769191,18049187 50
G051 DATA 129y-2+1404172509y-345179+,184+0

5052 DATA 188+14851468+1885051915181,1867191450
G053 DATA 128s-2+191212B5051805-2,179518450
5054 DATA 128,-25191,128-0:18%9,182,185+19050
5055 DATA 128:-2519121285051746+185,182517690
5056 DATA 1805135167 +18450177:19051892178+0
5057 DATA 18051553,167s184505191+181:1865191+0
5058 DATA 188y-2,14051765021761-3,17950

5059 DATA 1

LISTING 8-4 DATA listing and checksum routine for the double-sized
alphanumerics, Project 8-4

I
| > ; 5
5 7 S 10 _ #
Y “
2 3 .4.4 5 : E
1 g 2 v >3
!

0
AV
)]
W

Y

3

i

"

FIGURE 8-2 Worksheet version of a double-sized, black-on-white alphanumeric char-
acter set



Customized Character Sets 95

TRS-80’s built-in character generator. They are also developed as black-
on-white characters, but as was suggested in Chapter 2, they can be
reversed to show white characters on a black background.

Since each of the characters occupies two screen lines of five
characters each, the DATA listing for all 59 of them is a rather extensive
one. The DATA listing is shown in Listing 8-4; once you enter all that
data and execute the checksum routine successfully, you won't have to
worry about typing all that data again.

The line numbers for the DATA listings (program lines 5000 through
5059) are selected so that their last two digits correspond to the custom-
ized codes that are assigned to the worksheet characters in Fig. 8-2. Pro-
gram line 5017, for instance, is the data for character 17—numeral 1. If

Fd !
5




96

you want to find the DATA list for the letter X-—~code number 56—just
look at DATA line 5056. That line-numbering format allows you to locate
the DATA listing for any of the characters, and you might want to do that
in order to modify their appearance later in this discussion.

The next project lets you view the individual characters, one at a

time,

CHAPTER 8

on the screen.

PROJECT 8-5

10 R
15 R
20 C
25 In
30 C
100

105

110

115

120

125

130

135

1490

145

150

155

4000
4005
40190
4015
4020
4025
4030
4035
4040
4045
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012

5013

Assuming you have entered and successfully executed Listing 8-4,
load the resulting alphanumeric DATA listings and extend the program
to inciude standard string-packing and initialization routines. Then add
a simple control routine that lets you select a character to be viewed by

striking its key on the system keyboard. See Listing 8-5.

EM %% PROJECT 8-S

EM VIEW THE ALFHANUMERICS
LEAR 1024iDEFSTR C

IM C(3951)

LEIPRINT “FACKING ..."1GOBUR 4000
REM %X CONTROL ROUTINE

CLS

FOR N=0 T0O 2

PRINT @ 128+NX64»STRING$(10+191)3
NEXT N

PRINT @ 896,"TYPE THE CHARACTERS YOU WANT TO SEE

C=INKEY$!IF C="" THEN 130

IF ASC(C)<32 OR ASC(C)I>90 THEN 130
FOR L=0 TO 1

FRINT @ 195+L%64sC{ASC(C)I-3251)3
NEXT L

GOTO 130

REM ¥% STRING-FACKING SUBROUTINE
N=0

L=0

CONsL)=CHRE(191)

READ &

IF Ax1 THEN CONsL)=CONsLIHCHR$(A)IIGOTO 4020

IF A=0 AND L=0 THEN L=1:G0TO 4015
IF A=0 AND L=1 THEN N=N+131GOTO 40190

IF 4<0 THEN READ BIC(NsL)=CONSLIFSTRINGH(ABS(A)SEIIGOTO 4020

RETURN
DATA —4,191,0y~-4,1910

DATA 191,149517051915051915183,187,19150

DATA 189+190,189,190+05~4419150

DATA 179,162+145,17950,1885184,180,188+0
DATA 128514051365140509-2+1799178917690

DATA 1885159+163+188505179518851921517950
DATA 153,140,187517550,18251795180519150

DATA 191,1895186+191+05-4519140

DATA 131,18451909191+05188517851872191+0
DATA 191,189+180213150519151835177,188+¢
DATA 134,129:130513750,185,180,184,182,0
DATA 1435,133,138:1435051915181+186,1910

DATA ~45191+0+180,~35191+0
DATA ~4+143+0s-4919140

»

*

"
v



5014
5015
5016
5017
S018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
G037
5038
5039
5040
G041
5042
5043
5044
G045
5046
5047
5048
5049
5050
§051
5052
5053
5054
5055
5056
5057
5058
5059

LISTING 8-5 A routine for viewing the black-on-white alphanumerics, Pro-

It doesn’t take long to get Listing 8-5 up and running if you have
saved the DATA listing on tape or disk as recommended in the previous
project. Strike a key or two. If all is going well, you should see a double-
sized, black-on-white version of the character near the upper-left part of
the screen. Check them all. If you don’t happen to like the appearance of
one of them, just work out your own worksheet version of it and modify

DATA
DATA
IATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

~4351919051799-3519150

19151595 1855190509 17951902 -2519150
167 5~251885 155505 189y-25179+¢ 19040
183,188,12819190+183917991761179 90
184,~2y140517620y1765-3517950
1849y~2y1405160+0y1785~-2+1799176450
12851435128+ 14350y-251915176519150
1289291405174 +s0+-35179+18450
128,~3+14350,18051785179917640
184,1885156:160+0519151835184,191+0
145,~25140916250+1805~2,179+18B450
148y~291405134+05-35191517650
19121835187 +191502191189+190,19140
19151835187+ 191:05171,18951869191+0
143,179+188:191+0+191,188:179+19150
~43179509~4y18850
191,188+179y143505191517951885191590
18551882140,178505~2,191217951915¢
1855140,188,155,09189517951825190+0
13551775178+ 13920+1765-25188217650
128y-2514051625051765-25179:184+0
129,-2y1885180505180y~25179+177 50
128:188,180+13950517651795177519050
128s-2+140518850+s176+s-3+179:0
128s~2+140,18850,1746+-3719150
129915651409 1725051802-2+1795184:0
128s~2y1435128509176s-25191 917650
191+1495170+191+0,1591,1815186519140
~35191212850,1805s-25179+184450
128+143,1797188+0,17651915188517950
128935191905 1765~3717%+0
12851559167 9128509 1765-22191917 640
1285148y175+128509176219151784+17650
1299y~2»188513050s180,-2+s1795184+0
128,~291405162509174+-321%9150
167+~2,1885155,0,189y-25179518250
128y~25140516250s176:s1915180,18750
1299y~291409172505-35179+18440
188y148,168,18850,1915181,1846,19150
128y~2+191+12840,180,-2,179518450
128,-2+191,12850,189,1825185,1%050
128y-2y191+1285051765185:182517650
180y155+147+184405177219051892,178,0
i80y155+167+1845051915181,184+19150
188y~2914051769021765y-35179+50

b

ject 8-5

the corresponding DATA line accordingly.

The string-packing subroutine resides in lines 4000 through 4045. It

97



98 CHAPTER 8

is tailored for a DATA format that uses zeros to mark the end of each of
the two lines in each character symbol. A numeral 1 in the DATA (line
5059) marks the end of the packing operation. A negative number in-
dicates the application of a STRINGS function, where the absolute value
of the number represents the number of identical characters to be drawn
in succession, and DATA item following that negative number indicates
the character code. Thus a sequence such as — 4,191 sets up the function
STRINGS$(4,191). DATA items that are greater than 1 call for a CHR$
function.

The special character images are packed into a string array of the
form C(N,L), where N is the character code number (0 through 59) and Lis
the line number for that particular character (0 or 1). Notice, however, that
the string array is initialized in line 4015 to a value of CHR$(191) as op-
posed to the usual null value. The purpose in this case is to insert a graphic
191 at the beginning of each line in each of the alphanumeric characters.
Doing the insertion at this point saves you from having to type in a lot of
191s through the DATA listings—118 of them.

The control routine (program lines 100 through 155) first plots a
white background area, then waits for the user to strike a key. Line 135
makes sure that none of the special control keys has any effect on the
operation of the program. Only alphanumeric characters and standard
punctuation marks are allowed in this case.

Lines 140-150 are the program’s printing operations. The selected
character, assigned to variable C, is originally an ASCII code number. The
ASC(C) — 32 expression in line 145, however, converts it to our special
character code number.

converting to white-on-black

Perhaps you would like to see that same character set printed with
its blacks and whites reversed. That would produce the more customary
white character on a black background.

As described in Chapter 2, any of the TRS-80’s special graphic sym-
bols can be complemented by subtracting the given code number from
319. That simple arithmetic operation reverses the blacks and whites.

Rather than retyping the whole DATA listing for the customized
character set, reversing the blacks and whites can be a simple matter of
altering the string-packing subroutine so that it packs the complements
of the existing DATA listing.

The important lines, as far as the current subject is concerned, are
program lines 4015, 4025, and 4040. Compare them with the versions in
Listing 8-5.



PROJECT 8-6

Using the custom alphanumeric DATA listing introduced in Listing 8-4,
rewrite the string-packing routine so that the program draws white
characters on a black background. See the resuit in Listing 8-6.

10 REM %% PROJECT 8-6

1S R
20 C
25 D
30 C
100

105

125

130

135

1490

145

1350

155

4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
502¢
5021
59022
5023
5024
5025
5026

EM WHITE-ON-BLACK CHARACTERS

LEAR 1024:LEFSTR C

IM C(59s51)

LSIFRINT "PACKING ..."i1GOSUR 4000

REM %X CONTROL ROUTINE

CLS

PRINT @ 896,y"TYPE THE CHARACTERS YOU WANT TO SEE +.."

C=INKEY$:IF C="" THEN 130

IF ASC(C)<32 OR ASBC(C)I>?0 THEN 130

FOR L=0 TO 1

PRINT @ 195+LX64yC(ASC(C)I-32+L )3

NEXT L

GOTO 130
REM XX STRING-FACKING SUBROUTINE
N=0
L=0

CONyL )=CHR$(128)
READ A
IF Ax1 THEN CONsLDI=CONsLIHCHR$(319-A)IG0TO 4020
IF A=0 ANI L=0 THEN L=131G0TO 4015
IF A=0 AND L=1 THEN N=N+1i1GOT0 4010
IF A<0 THEN READ RIC(NyL)=C{(NsLISTRING$(ARS(A)»319-K)IGOTO 4020
RETURN
DATA ~45191s0+s-4519150

DATA 19151495170519150,191,183,187519140
DATA 18951905189+190505-4y19150
IATA 1795162,145,179+0,188,184,180,188+¢
DATA 128+140,136914050¢-241795178517650
DATA 188,159y163+18850,179,188,1914179+0
DATA 153+1405187,175,0918251795180+191+0
DATA 1915189s1865191505-4519150
DATA 131,184,190,191+0,188,178,187,19150
[ATA 191,189,180513150,191,183,177,18850
DATA 134,12951305137+04185,180,184518250
DATA 143,133,138,143505191,181+186,19150
DATA ~4+19150+1805~-3,191,0
DATA ~45143505-4,19140
DATA ~4419150+1799-3519140
DATA 191,159y185,19050,1795190+-2519150
DATA 167,-2,188515550,189y-25179519040
DATA 183,188,128,19150518351799176517950
DATA 184+~2514091765091765-3917950
DATA 184,-2,140516050,178y-25179¢176+0
DATA 128,143,128514350y~2+1915176519150
DATA 1285-2+1405174,05~35179,184,0
DATA 128,-35143+05180,1785179+17650
DATA 184,188,1565160,05191,183,184,19150
DATA 145,~2+140,162+0,1804-25179+184,0
DATA 145y-25140513440+-3:191+17850
DATA 191,183,187+191,05191,1895190+191+0

{cont.)

99



5027 DATA 19151832187 +191:0,19151895186+19150
5028 DATA 143+179+1885191502191,188+179519150
5029 DATA ~49179s05-45188+0

5030 DATA 19151889179+143,0,191+17951885191+0
5031 DATA 185,188,140,178505-2,191+179519150
5032 DATA 18551405188, 155,0,1899179291825190+0
G033 DATA 13591779178+13935091769y-2+18811760
5034 DATA 128y-25140:162509176+~25179518450
G035 DATA 129+-2+188+18020:180+-2+179+17750
5036 DATA 128,1885180913950917651794177519040
G037 DATA 128+-2+,140,18820+1765~3+17950

5038 DATA 128y-25140,188+051765-351%1+0

5039 DATA 1299156514017 250+180y-2¢179518450
5040 DATA 1285~2+143,128+051769-25191917640
5041 DATA 191y14951705191+0519151815186519140
G042 DATA -3s191+12850,1805-25,179:184,0

5043 DATA 128,143517951885051765191+188+17%950
5044 DATA 1289~351915051765-3517950

5045 DATA 12851555167 y128505176:2-25191+47640
5046 DATA 128+148,175,12890517691915178517640
5047 DATA 129:~-2y188,13050-1805-2,179,18440
5048 DATA 12By~2914091625051769-3419150

5049 DATA 167+-2,188y155y0,189»~25177518250
5050 DATA 1285-2+s140,162,021765191:180+18750
5051 DATA 129925140917 250935s179+184 50

5052 DATA 188,1485168+,18850,191+1815186+17140
5053 DATA 128,-25191 4128505180+ -25172.1840
5054 DATA 128y-2,191,128,0,18%,182,185,19040
5055 DATA 128,-2y191,128509176+185y182517690
5056 DATA 180,15551679184505177519051892178+0
G057 DATA 180,155,167 5184,05191,181+1846219190
5058 DATA 188s-2514051764051765-3917950

3059 DATA 1

LISTING 8-6 A routine for converting to white-on-black alphanumerics,
Project 8-6

Line 4015 now begins each character line with a black space instead
of a white one. In line 4025, a string is packed with a CHR$(319 — A) func-
tion so that the original DATA item is complemented. The same sort of
operation is found in the STRINGS$ function of line 4040.

The important idea is that the DATA listing is left unchanged. The
blacks and whites are reversed from the DATA specifications in the
string-packing part of the program.

In a manner of speaking, a DATA listing is generally regarded as
sacred. Once it is generated and debugged, programmers are reluctant to
make any changes in it. Any desired modifications are handled elsewhere
in the programming.

Incidentally, if you are preparing Listing 8-6 by simply modifying
Listing 8-5, notice that the revision omits control routine lines 110-120.
Those lines were responsible for drawing a white background for the black
characters. In this program, the white background is inappropriate, so its
drawing routine is deleted.



selecting black or white characters

This alphanumeric character set has a lot of potential applications,
and it would be nice if you had a chance to select the black or white
characters without having to use a separate program for each of them. The
next project combines Listings 8-5 and 8-6 into one program.

PROJECT 8-7

Modify the character-printing routine so that you can select either
white-on-black or black-on-white characters. The result appears in
Listing 8-7.

10 REM XX PROJECT 8-7

1% REM SELECT BLACK AND WHITE

20 CLEAR 1024iDEFSTR C

25 DIM C(59+1)

30 CLS!PRINT "WHICH COMBINATION (1 OR 2)3"

35 PRINT TAB(S5)i"1 -- BLACK ON WHITE"

40 PRINT TAB(S)i"2 —— WHITE ON BLACK"

45 PRINT

S0 INPUT TIIF T=1 OR T=2 THEN 355 ELSE 50

55 T=T-1ICLSIPRINT "NOW FACKING ...":GOSUB 4000

100 REM Xxx CONTROL ROUTINE

105 IF T=1 THEN 125

110 FOR N=0 TO 2

115 PRINT @ 1284+NX464sSTRINGS( 10,191 )5

120 NEXT N

125 PRINT @ 896s"TYPE THE CHARACTERS YDU WANT TO SEE ..."

130 C=INKEY$:{IF C="" THEN 130

135 IF ASC(C)<32 OR ASC(C)>90 THEN 130

140 FOR L=0 TO 1

145 PRINT @ 195+L%&64,C(ASC(C)I~325L)5

150 NEXT L

155 GOTO 130

4000 REM XX STRING-PACKING SUBROUTINE

4005 N=0

4010 L=0

4015 CONsL)I=CHR$(191-T%63)

4020 READ A

4025 IF A>1 THEN CONsLI=C{NsL HCHR$(A+TH( 319-2XA ))IGOTO 4020

4030 IF A=0 AND L=0 THEN L=1:G0TO 4015

4035 IF A=0 AND L=1 THEN N=N+1:GOTO 4010

4040 IF A<O THEN READ BIC(NyL)=C(NsL)I+STRINGH{ ABS(A)ryB+TX{319-2%XE ) )¢
GOTO 4020

4045 RETURN

5000 UATA ~4,19150y-4519150

5001 DATA 191+149+170519190,5191,18351875191+0

5002 DATA 1895190:1892190502-4,5191+0

G003 DATA 1795162+1455179+0,188,184,180,188+0

5004 DATA 128514021346+140505-2+1795178217649

5005 DBATA 18851595163+188,05179,1882191,17950

5006 DATA 153,1405,1872175505182517951805191+0

5007 DATA 191+189+1865191905-4,191+0

5008 DATA 131,184+,1905191,0,188+178,187519150

101



5009
5010
S011
5012
5013
G014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DaTaA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LISTING 8-7 Programming for selecting the white and black areas for

Again, there is no tampering with the original DATA listings, pro-
gram lines 5000 through 5059. That information can be loaded into the
computer by loading Listing 8-4 from tape or disk and doing a RUN to get

191,189,180+131+0:191,183,177,188+0
13451295130513750:185,1805184518250
1435133+138s143,05191+1817186219150
~4519150+1805-35191+0
~45143:07-4519150
~4919150,1795-35191 50
19151595185519020:17951905-2+191+0
1679y-25188+155205189,-2+179+190+0
183,188,1285191+0:183+1795176517950
1845, -2514021765091765-3517%50
184r-29140,16070,178y-25179517650
128+14351285143509-25121+1762191 50
128y-2+1405174905-351799184 40
128y-3514350:s180+1785179917650
1845188y156216090,191,183,1845191 50
1459s-2+14051625051805-2517F918450
1459~251405134505-351915176590
191,183,187 +5191+0,19151897190519150
191,183,187 5191+05191y18951865191+0
143+179:1885191+0,1915188,1795y19140
~4917%:05-4:188+0
1919188,179514350+19215179:188,191 40
185,188+140,1785,0y-25191+1797191 50
185y140,1885155,0+189y1792182,190450
1359177 91785139905 1765-2+1885 176440
1287~-2+14051625091769-25179+18B4490
129y-2,1887180505180+-25179+177 50
1282188721809139502 1762177+ 177 519040
1289-25140+1885091765-3517220
128,-25140,51885051765-3+191 50
1292153621405 172+051805-251795184,90
128y~2514351285091765-2+191417640
191914991705191,0+1915181,186y19150
~3:1915128905180+-2+179,18440
1285143+179+188507176,191+188+17%50
1285s-3:19215021765-39179450
1285185167 91285051789 ~-251P1517640
12851489175+ 128+051765191 178417640
1299y-2+1885130+051805-251795184+0
1289~2+14091629091769-35191 40

167 9~2+188+155505,18%:~251799182+0
128s-25140516250:1765191,180+18750
129y-221405172+05y~3+179518440
188,148,168,188,0,191,181,186,191+0
1285~2+191512850+180,-25179518450
1285-2+1215128,0,189,182,1855190+0
1289-25191+12850,176,1855182517650
180,15355167+18450:1777190518%95178450
180,155,167 +184,0,191+181,186519150
188:-2514021765051765-39179+0

1

Project 8-7

a checksum and delete the checksum routine.



Customized Character Sets 1US

The initialization routine, program lines 15 through 55, includes a
section that lets the user select the character contrast BLACK ON
WHITE or WHITE ON BLACK. Theresponse is assigned to variable T;
by the time the program gets to the control routine, T is set to zero if the
characters are to be black on a white background, or set to 1 if they are to
be white characters on a black background. Therefore, if T=1 at program
line 105, operations skip down to line 125, bypassing a short routine that
draws a white background for black characters. That white background is
drawn, however, when T=0.

The remaining lines in the control routine make no further reference
to variable T. Whether the characters are white or black has no further
relevance at that point.

The value of T is critical through the execution of the string-packing
subroutine, however. Line 4015, for instance, inserts either a graphic 191
or graphic 128 at the beginning of both lines in each character. It inserts a
191 if T is equal to zero (black characters) or a graphic 128 if Tis equal to 1
(white characters).

What about the CHR$ expression in line 4025? Follow through the
arithmetic in that function, and you will find it is equal to CHR$(A)
whenever T is equal to zero. In that case, the program packs the values ex-
actly as they are formatted in the DATA listing—as black-on-white
characters. But if T is equal to 1, the function turns out to be
CHR$(319— A), thus yielding the complement of the original DATA item.
The same mathematical trick is applied to the STRINGS$ function in line
4040.

a large-character typing routine

There are many occasions when TRS-80 users want to prepare a full-
screen message that is made up of double-sized alphanumerics. Often that
means setting up a worksheet analysis and writing a custom program for
every sort of message one wants to present. But why go to all that trouble
when the special alphanumeric character set offered here is available?
Why not just type in the message you want to present?

This program allows you to type in a full screen of oversized
alphanumerics just as you would type in the usual TRS-80 characters.
The editing features are a bit weak, but with some planning and practice,
it is possible to set up some nice full-screen messages.

While typing in a line of characters, you can backspace and erase by
striking the left-arrow key. The program does not allow you to backspace
from the first position on one line to the last character position on the
previous line, however.

If you make a mess of things, start over by holding down the SHIFT
key and striking the C key. The SHIFT-C operation clears the screen and



PROJECT 8-8

Load the custom alphanumeric DATA listing from Listing 8-4, then
patchinlines 10 through 4045 as shown in Listing 8-8. Doa RUN, reply
to the opening request for a choice of black or white characters, wait
for the string packing to be done, and then begin typing on the
keyboard.

10 REM %X PROJECT 8-8

15 REM ALPHA TYFING

20 CLEAR 10241DEFSTR C

25 DIM C(59»1)

30 CLSIPRINT "WHICH COMEBINATION (1 OR 2)3*

35 PRINT TAB(S5)3"1 -— ELACK ON WHITE"

40 PRINT TAB(5)5"2 -~ WHITE ON BLACK"

45 PRINT

S0 INPUT TIIF T=1 OR T=2 THEN 55 ELSE 50

55 T=T-1

60 CLSIPRINT @ 400,"%% ALPHA TYFING ROUTINE Xk

635 GOSUR 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 IF T=0 THEN FRINT @ 0sSTRING$(64y191)3

115 F=64

120 C=INKEY$!IF C="" THEN 120

125 IF ASC(C)=99 THEN 105

130 IF NOT(ASC(C)=8 AND FPOS(X):=5) THEN 145

135 p=F-5

140 FOR L=0 TO 1IPRINT @ P+o4XLsSTRING$(9s128)5 INEXT L

145 IF ASC(C)I<3Z OR ASC(C)»90 THEN 120

150 FOR L=0 TO 1

135 FRINT @ PH+o4XL,CCASCCCI~-324L)5

160 NEXT L

165 P=P+5

170 IF POS(X)<60 THEN 120

175 IF T=1 THEN 185

180 FOR L=0 TO 1!FRINT @ P+L¥64sySTRINGS( 4,191 )5 INEXT L

185 P=P+48

190 IF P«<=959 THEN 120

195 F=6431G0TO0 120

4000 REM %X STRING-PACKING SUBROUTINE

4005 N=0

4010 L=0

4015 CONsL)=CHR${ 191-T%63)

4020 READ A

4025 IF Ax1 THEN CONsL)=CONsL MCHRS(A+TR(I19-244))1COTC 4020

4030 IF A=0 AND L=0 THEN L=1:GOTO 4015

4035 IF A=0 AND L=1 THEN N=N+1:GOTO 4010

4040 IF A<0 THEN READ BICONsL)=C{NsL)STRINGS( ABS(A s B+TH{ 319~2KH) )3
GOTO 4020

4045 RETURN

5000 DATA -4519150,~4519150

5001 DATA 1915149,17051915071915183,18751910

5002 DATA 189519051895190505~4519150

5003 DATA 1799162,145517950+188,184,180,188,0

5004 DATA 128,140,136914050y-2517951785176+0

3005 DATA 188,159516351885051795,188,191+17950

3006 DATA 153+1405187,175,05182,179,1805191+0

5007 DATA 191518951867191v05-4519150

5008 DATA 1315,184,190,19150+1885178,187,191+0



5009 DATA 191,189,180,131,0+191,183,177,188+0
5010 DATA 134,129,130,137,05185,180,184,182,0
5011 DATA 143,133,138,143,0+1915181,186519140
5012 DATA 45191505180, -3,191+0

5013 DATA -45143+0,-4519150

5014 DATA -45191s0+1795-39191+0

5015 DATA 191,1595185,19050517951%905~-2,191+0
5016 DATA 1467:-2518B515550,189y-25179:190+0
5017 DATA 183,188,1285191+0,183+1795176517940
5018 DATA 184s-2+s140y176902176y-3517950

5019 DATA 184,~2,140516050+178,-25179917650
5020 DATA 1285143,128r143,05-251915176519140
5021 DATA 128r,-25140,17450y-35179518450

5022 DATA 128,-35143,505180,1785179517640

5023 DATA 1845188y156,160+0+1915183,184y17914+0
5024 DATA 145:,-25140,162,051805y-25179s18450
5025 DATA 145:,-2,140,134505-3+191,517650

5026 DATA 191,183,187519150519151895190519140
5027 DATA 19151835187519150,191+1895186,19140
5028 DATA 143+179,188,191,0,191,188,179519150
5029 DATA -4,179y0+~4518850

5030 DATA 191+188+179,14350,1915179+188+19150
5031 DATA 185+188s140517850,-25191+179,19140
5032 DATA 185,140,188,15550,189,179,18251%9090
5033 DATA 1359177517851395051769-2y188517650
5034 DATA 1285-2514051625091765-25179518450
5035 DATA 129,-2y188,180+0,180y~25179517740
5036 DATA 1285188,18051399051746917%95177517040
5037 DATA 128+-2y140518850,1765-3517940

5038 DATA 1285~2y140,188,40+1767-3519150

5039 DATA 129»15651405172+0,1805-2,179+184,50
5040 DATA 1289-25143,128505176y-25191,17650
5041 DATA 191+y1495170,191+051915181y186519140
5042 DATA ~3,191,12850,180,-2,179518450

5043 DATA 128514351795188,0+17651915188517950
5044 DATA 128,-3519190+1765-35179+0

5045 DATA 128:155516791289051765-25171517640
5046 DATA 12851485175,128505176519191785176440
5047 DATA 1295-2y188513050,180y-2+179518450
5048 DATA 128s-251405162+0+1765-3519150

5049 DATA 167»-251885155,0+189,~2,179+18250
5050 DATA 128y~25140,16250,1765191+41805187590
5051 DATA 129y-2,140,172+0y~35179+184,0

5052 DATA 1885148,168,188,0,1915181,186519140
5053 DATA 128,-25191+12850,180y-25179518450
5054 [ATA 1285-2,191,12850,189,182,185519040
5055 DATA 128,-2y191+12850,1765185,182,17650
5056 DATA 180¢155+146751B4,0,177,190+189517850
5057 DATA 18051555167,18450519151815186+19140
5058 DATA 188y-2y14051765051765-3+17940

5059 DATA 1

LISTING 8-8 Programming for typing the double-sized alphanumerics,
Project 8-8

homes the invisible cursor, forcing the next-typed character to appear
near the upper-left corner of the screen.

Whenever the screen becomes completely filled with characters, the
“cursor’’ is automatically sent to the beginning of the first line. There is
no scrolling feature built into this particular control routine.

105



106 CHAPTER 8

The editing features do leave a lot to be desired, but the project
makes its point: it clearly illustrates how a rather extensive array of
string-packed images can be manipulated in an on-line, interactive
fashion.

A RUSSIAN CHARACTER SET

Fig. 8-3 shows a Russian alphanumeric character set. Like the two
previous examples of character sets, this one uses a 5 x 6 worksheet for-
mat. The Russian alphabet is somewhat more complicated than the Eng-
lish alphabet in terms of fine detail required for some of the characters. It
is possible to generate a tolerable facsimile of the characters in this 5 x 6
format, but if there were much more relevant detail in some of the
characters, it would be necessary to expand the characters to a larger
pixel format. That, indeed, would be the case for Greek, Arabic, and
Hebrew character sets.
The first major phase of the job is to:

* Sketch the characters onto a video worksheet, maintaining a
uniform set of dimensions and conforming to the limitations of the
TRS-80 pixel format.

* Assign numeric codes to all of the characters, using some sort of
rational numbering system.

¢ Make up a program DATA listing.

Normally, you will not include the checksum routine that is in lines
20-40. That is inserted here to make certain you copy this particular ver-
sion of the DATA listing properly. Just type in Listing 8-9 from scratch,
then do a RUN. If you have copied the listing perfectly, you will soon see
an OK message and the READY comment. Do a LIST at that point, and
you will see that the checksum routine has been deleted. If there are any
typing errors in the DATA listing, you will get a DATA ERROR mes-
sage. The checksum routine will not be deleted, so you will have an oppor-
tunity to double-check the listing and RUN it again. When making up
your own character sets, you won’t know what the checksum number will
be; the only way to check the accuracy of the DATA listing is to write a
routine that lets you view the characters on the screen.

Now the program is a full-feature string-packing and drawing pro-
gram. The DATA listing (lines 5000 through 5043} is the one that was
developed earlier. If you saved it on tape or disk, there has been no need to
type in all that data again.



FIGURE 8-3 Worksheet version of a Russian character set

107




PROJECT 8-9

Perform the three steps just described, using the Russian character
set in Fig. 8-3. See the DATA listings in Listing 8-9.

10 REM %% PROJECT 8-9

15 REM RUSSIAN CHARACTERS LATA

20 CLSIT=0

25 READL AlT=T+aA

30 IF A1 THEN 25

35 IF T=46762 THEN FPRINT "OK"IDELETE 10-40

40 FRINT "DATA ERROR" IENI

S000 DATA ~4519190+-4519150

5001 DATA 1679~-2+1885155,0518%5-25179519040
5002 DATA 183,188,128:191:0518391795176+17990
5003 DATA 1845-2514051765051769~3417949

5004 DATA 1842514016050 1789y~25179917640
5005 DATA 12851435128+ 14350y~2+1915176919150
5006 DATA 128»~2+1405174409-3y179y184 40

S007 DATA 1285-35143505180,1785179217640

5008 DATA 18451885156516950-1719183:184179140
5009 DATA 145s~2514051625091809-25179918440
5010 DATA 145,-251405134405y-3+4191s17650

S011 DATA 135517751789 1395091769-25188+176+0
5012 DATA 128y-311405091769-23179917640

S013 DATA 128y-2:1405162505176y~251799184+0
5014 DATA 128+-2,1885180y051765-351791+0

5015 DATA 1485-2,1887168505184y-2,1885180+¢
S016 DATA 128+y~2+140+1885051769-3217950

S017 DATA 180s133,138,184,051775181+1865178+0
5018 DATA 185,140,132,178+0+17891795177,18450
5019 DATA 128,159+188+128+051765185:191+17640
5020 DATA 143,18891565143502 1767183519041 7690
5021 DATA 1285143,179,188y0517691915188517950
S022 DATA 1915,128+188:128y02177+190+191+17640
G023 DATA 12851539167 1289091765-25191917640
S024 UATA 128,-2+143,128909178s-25191917640
S025 DATA 1295,~2,1885130505180+y~245179+18450
5026 DATA 1285-2,188+1285051769-21191517640
S027 DATA 128+-29140916250y1769~3919150

G028 DATA 1285-2+18891765091765-25179917690
5029 DATA 18851485168,188+0519151815184+1791+0
S030 DATA 18051555167 9184502179,1885-2+1915¢
5031 DATA 135:145:16213950518951805,1845190450
5032 DATA 180y155,167 5184509177 9190418917890
5033 DATA 128+-251915128905-3,188+180+90

5034 NATA 1445-251435,128509-35191517650

S035 DATA 128y149517051285091769177 5178517650
S036 DATA 1285149:1702128505-351885180450

S037 DATA 184,128y -25143:0219151769179417640
S038 DATA 128Bs1434175,3285051765179+184217640
5037 DATA 1319-2y143217550y176y-25179918440
5040 LATA 185,1885140,130+051824-251799184490
9041 DATA 1285185,1805139505176:18251775190+0
5042 DATA 145y-2,140512850+183+18451919176+0
5043 DATA 1

LISTING 8-9 DATA listing and checksum routine for the Russian
character set, Project 8-9



PROJECT 8-~10

Write a program that draws white-on-black versions of all the Russian
alphanumerics in the DATA listing from Project 8-9. See Listing 8-10.

10 REM X% PROJECT 8-10

15 REM VIEW RUSSIAN CHARACTERS

20 CLEAR 1024I1DEFSTR C

25 DIM C(43:1)

30 CLSIPRINT "NOW FPACKING ..."i1GOSUB 4000

100 REM *% CONTROL ROUTINE

105 CLSS =0 IN=0$5=0

110 FOR L=0 TO 1:FRINT @ D+S+64%LsCONsL IS INEXT L
115 N=N+13IF N>42 THEN END

120 S=8+5!IF 5>r=55 THEN S=0!D=D+128

125 GOTO 110

4900 REM XX STRING-PACKING SURROUTINE

4005 N=0

4010 L=0

4015 CINsL)=CHR$(128)

4020 READ A

4025 IF A1 THEN C(NsL)I=CONyL MCHR$(319-AIIGOTO 4020
4030 IF A=0 AND L=0 THEN L=1:!GOT0O 4013

403% IF A=0 AND L=1 THEN N=N+11G0TO 401¢

4040 IF A<0 THEN READ BIC(NsL )=CONsLI+STRINGH{ ARS(A)y319-E)IG0TO 4020
4045 RETURN

5000 DATA ~45191:05-45191»0

5001 DATA 167:-2,188915550518%99-2517%95190,0
5002 DATA 183,188s1285191505183+179y176517950
5003 DATA 184s~2514051762051769-3517950

5004 DATA 184,-251405180205178y-25179217650
5005 DATA 128,143,128+14350,~2,191+176+19150
5006 DATA 1285-2y140r174505y-3+1795184590

5007 DATA 1285~3y143,0,1805178,1795176+0

5008 DATA 184,188,156+1605051915183,1845121,0
5009 DATA 145y~2+,140,1625051805-2+1795184590
5010 DATA 1455-251409134,05y~3+191217650

5011 DATA 135y177,178+139+051769~2+188517640
5012 DATA 1285-351405021769~-25179517640

5013 DATA 128y-25140+1629051769~-25179518450
5014 DATA 128y-251885180507176+-3519150

5015 DATA 148,-2:188+168505,184,-2,188518050
5016 DATA 128y-25140,1885051769~-3917950

5017 DATA 180,133,138+184,0,177+181+186+17850
5018 DATA 185s140,132+178+05178y17%99177518450
5019 DATA 128,1595168:128,0517651859191417650
5020 DATA 143,188,156714350517651855190517650
5021 DATA 128s143,179+18850517651915188,17950
5022 DATA 1915128,188,12890517751905191+17650
5023 DATA 128515551671 285091765-25191517650
5024 DATA 128y-2y1435128,091765-2+s1914176+0
5025 DATA 129,-2,y1882130+0,180,-251795184+0
5026 DATA 128,-2,18821285051769-25191917640
5027 DATA 128y-2+1405162+051769~35191+0

5028 DATA 128,-2y188517620y1765-251799176+0
5029 DATA 188,148,168,188,0,191,181,18651%9150
5039 DATA 180+155,14675184,0,1795,1885-25191+0

{cont.)

109



5031 DATA 13551455162513950,189,180,184,19040
5032 DATA 18051555167 5184,051775190,1895178+50
5033 DATA 128+-25191,12850+-3:188+18040

5034 DATA 1445-25y1435128+09~351919176450

G035 DATA 128y1499170512850,17691775178917690
5036 DATA 128,1499170512850,-35188,18040

5037 DATA 184+128+-2514390+19151765179517640
5038 DBATA 128514351755 128+0+1765179+184y17640
G039 DATA 131y-2514351735021769-291795184,50
5040 [DATA 185,188y1405130405182y~24179518450
5041 DATA 128s183591805139+09 17651829177 919040
5042 DATA 145,-25140512850,183518451919176:0
5043 DATA 1

LISTING 8-10 Routine forviewing the Russian data set as white-on-black
characters, Project 8-10

The string-packing subroutine begins at line 4000. It is tailored to
the DATA format (zero marking the ends of lines, negative numbers in-
dicating STRINGS$ functions, and a 1 marking the end of the current
listing), and the 319— A and 319—B operations indicate a reversal of
blacks and whites. The original data were generated in such a way that
they specify a black character on a white background. The string-packing
routine in this example reverses that situation for each character being
packed into the strings.

The control routine (program lines 100 through 125) positions and
draws the characters in rows of 12 across the screen. When the routine is
done, you can see the entire character set filling the upper half of the CRT.

If you were working on a custom character set of your own, this
would be the time to double-check the appearance of the characters, modi-
fying the DATA listings wherever any changes are necessary. You can do
that now, in fact, if you don’t agree with the way I configured some of
these Russian characters; if you do that, though, bear in mind that the
checksum constant appearing in the original listing will no longer apply.

The final phase of the operation is to devise a control and drawing
routine that manipulates the available characters in some meaningful
fashion. In any event, it is a good idea to save the main DATA listings on
tape or disk so that they are readily available for any sort of program you
might want to write at a later time.



A First Look %53§§§
a1 TRS-80 3

ANIMATION

The general idea of animation is to create the illusion of motion, or at least
to impart a sense of vitality to an otherwise inanimate graphic display.
Animation can be as simple as making a small square of light blink on and
off, or it can be as complicated as making a couple of complex figures stroll
across the screen.

The basic principle of computer animation is identical to that of film
animation: the illusion of motion is created by presentation of a series of
drawings in rapid succession. Beyond that, however, the differences be-
tween film and computer animation are more striking than their
similarities.

The biggest differences between film and computer animation are
dictated by the time a computer requires for generating character
elements on the screen. The larger the number of changes in a drawing
from one frame to the next, the longer it takes to generate the image on the
CRT—and that always brings up the risk of an unsatisfactory visual im-
pression. With film animation the transition time from one frame to the

111



112 CHAPTER 9

next is virtually zero, and there is no relationship between the transition
time and the complexity of the changes taking place in the drawing.

Computer drawing time thus pervades the thinking of a computer
animator. It is an eternal struggle that can be minimized with know-how
and experience, but never completely eliminated.

Of course computer animation has some peculiar advantages over
film animation. One is the tremendous flexibility with regard to planning,
implementing, and editing an animation sequence. Along that same line,
there is no need to go through the agony of drawing hundreds of nearly
identical frames by hand. Above all, however, the notion of computer
animation brings the possibility of creating animated sequences to any-
one equipped with nothing more elaborate than a home computer system;
film animation is the exclusive domain of well-equipped professionals or
exceptionally talented and fortunate amateurs.

For all practical purposes, computer animation is divided sharply
into two levels of complexity: those situations that call for moving an im-
age from one place to another on the screen, and those that do not. It is
possible to generate some rather exciting and sophisticated animation se-
quences without actually moving the figure from place to place. One can,
for example, create a figure that dances a jig—the legs and feet moving up
and down, the arms flying about, the eyes blinking, and the mouth alter-
nating smiling and frowning—all without really moving the figure from
its original position on the screen. That is the simpler of the two kinds of
computer animation, and it will be implemented here through a special
technique called limited-segment framing.

Moving an animated figure—even a fairly simple one—from one
place to another on the screen is a far more difficult situation. It is simple
in principle but difficult in practice because every incremental change in
screen position demands a two-step operation: erasing critical elements of
the existing figure, and redrawing the entire figure in its new position.
Both steps require some computer time, and the overall visual impression
of motion can be something far less than satisfying. The obvious solution
to the problem is to find a way to erase and generate the image in a faster
way—specifically, using machine-language drawing and control routines.
That solution offers some problems of its own, and much of the closing
portion of this book is devoted to machine-language graphics and control.

AN INTRODUCTORY APPLICATION
OF LIMITED-SEGMENT FRAMING

Fig. 9-1 shows a framing sequence for a little robot figure that blinks its
eyes and turns its head to the left, right, and straight ahead. Those six
frames roughly resemble the frames a film animator might design for that



FIGURE 9-1 Framing sequence for Project 9-1—Blinking robot

particular task. The flexibility of the computer system, however, allows
us to create longer and more complicated head-turning and eye-blinking
sequences than a six-frame drawing might suggest.

Frame 1, for instance, shows the robot figure looking straight ahead,
whereas Frame 2 shows the robot in the same position, but with the eyes

113



114 CHAPTER 9

missing. Frame 2 is to be used in conjunction with Frame 1 to create the
impression that the robot is blinking its eyes. Whenever you want to
animate the figure so that it seems to be looking straight ahead and blink-
ing its eyes from time to time, an appropriate drawing sequence might
look like this:

1. Draw Frame 1 on the screen; do a 10-second time delay.
2. Draw Frame 2 on the screen; do a 0.5-second time delay, and then
return to step 1.

The figure would stare at you from the screen, blinking its eyes for a very
brief moment at 10-second intervals.

Before taking a firsthand look at a program that uses Frames 1 and 2
to create the blinking robot, it is important to introduce the notion of
limited-segment framing. Limited-segment framing isn't absolutely
necessary in this case because the figure and its animation are relatively
simple. But there is no harm in using the technique from the very begin-
ning of this discussion.

Looking at Frame 1 (and any of the others, for that matter), you can
see that the robot figure is composed of seven lines, L1 through L7. Com-
paring Frames 1 and 2, you can see that only the characters in line 2 are
different; the character configuration of line 1 and lines 3 through 7 are
identical. One can thus save some programming time, memory space, and
total drawing time by changing only the content of line 2 in the figure.
That is the essence of limited-segment framing. Wherever possible,
redraw only the lines (or portions of lines) of a figure that are affected by a
change from one frame to another.

Thus once the robot figure is drawn as it is shown in Frame 1, getting
to Frame 2 is a simple matter of redrawing line 2 with the eye characters
absent. Getting back to Frame 1 from Frame 2 is a simple matter of
redrawing line 2 with the eyes in place again.

PROJECT 9-1

Write an animation sequence for a robot figure, using limited-segment
framing as it applies to Frames 1 and 2 in Fig. 9~1. See Listing 9-1.

%10 REM *¥ PROJECT 9-1

15 REM BLINKING ROROT

20 CLEAR S12I1DEFSTR F

25 CLSIFRINT € 404y "BLINKING ROBOT ANIMATION”
30 GOSUR 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 D=284

118 GOSUR 1000



120 T=1000:GO5UR 950

125 GOSUR 1022

130 T=25iG0SUR 250

13% GOSUR 1012

140 GOTO 120

950 FOR Th=0 TO TINEXT TOIRETURN

1000 REM %% DRAWING SUBROUTINES

1001 FOR L=1 TO 7iFRINT @ DHé4k(-1)sF(1yL)5 INEXT LIRETURM
1012 PRINT @ DH64,F(1+2)5 iRETURN

1022 PRINT @ D464,F(CZy235 IRETURN

4000 REM XX STRING-FACKING SUBROUTINE

4001 L=1

4002 GOBUER 4500FCLyi)=F1IF A=0 THEN L=L+1:GOT0O 40402
4022 GOSUR 45001F(2:2)=F

4499 RETURN

4500 F=="

4505 READ A1IF A=0 OR A=1 THEN RETURN

4510 IF A>0 THEN F=F+CHR$(ADIGOTO 4503

4515 READ BIF=F+STRINGH#(ARS(A)sBIIGOTO 4503
5000 REM ¥k DATA LISTINGS

5011 DATA 193:1607,144519590

5012 DATA 193+13651912187,183,191 13219340
5013 DATA 193,1885172,1905189515651885 19340
5014 DATA 130191 17051899187 51495191 12940
5015 DATA 130513151865 1495170,181,131912%40
5016 DATA 19441705149517014950

5017 DATA 193,-25131+s129,130,-2y13150

5018 DATA 1

5022 DATA 193s1369-45191+132,19351

LISTING 9-1 Programming for Project 9-1

Type the listing into your computer and give it a try. When you are
satisfied that the little robot figure is staring at you and blinking its eyes
every once in a while, save the results on tape or disk. Subsequent projects
will be easier to load if you have this program as a starting point.

The listing doesn’t appear to be much different from any of the
string-packing programs described for static figures. Looking through
the program, you should be able to identify:

The initialization routine (lines 10-30)

The control routine (lines 100-950)

The drawing subroutines (lines 1000-1022)

The string-packing subroutine (lines 4000-4515)
The DATA listings (lines 5000-5022)

The initialization routine sets up the system for doing the string-oriented
program and calls the string-packing subroutine. The string-packing
subroutine reads the DATA listing and packs the string variables. Fi-
nally, the working portion of the program is underway as the control
routine calls the appropriate drawing subroutines and times their presen-
tation on the screen.

115



116 CHAPTER 9

It is only the way the strings are defined and the way they are called
and drawn from the control routine that makes this program run as an
animation sequence instead of a static-figure drawing routine.

Table 9-1 summarizes the definitions of the string variables. The
convention used here, and through most of the other animation routines in
this book, specifies a frame number and a line number by means of a two-
dimensional string array. Line 2 of Frame 1, for instance, is defined as
F(1,2); Line 2 of Frame 2 is packed into variable F'(2,2). The first numeral
in the array expression specifies the frame number, and the second
numeral specifies the line number within that frame.

Thus the entire Frame 1—all seven lines—are packed into string ar-
rays F(1,1) through F(1,7) at program lines 4001 and 4002. Those strings
are packed from the DATA listings in lines 5011 through 5018.

Frame 2 differs from Frame 1 only by the appearance of Line 2. Thus
there is no need to pack variables for all seven lines in Frame 2; packing
F(2,2) is sufficient. That variable is packed by means of program line 4022,
and it uses the DATA in line 5022.

There are three drawing subroutines: one for drawing all seven lines
of Frame 1, one for drawing Line 2 of Frame 2, and one for drawing just
Line 2 of Frame 1. See program lines 1001, 1012, and 1022 respectively.

Up to this point in the analysis of the program, you have seen how
the relevant string variables are defined, packed, and drawn. All that re-
mains is to design an appropriate control routine.

The animation portion of the control routine is shown as a flowchart
in Fig. 9-2. Obviously, the routine must begin by drawing the full robot
figure. In this particular instance, that means drawing all of Frame 1. A
relatively long time delay then creates the impression that the figure is
staring straight out of the screen. See if you can follow these two opera-
tions as they are implemented in program lines 115 and 120.

Then it is time to make the robot figure blink its eyes. The general

TABLE 9-1

DEFINITIONS OF STRING-PACKED VARIABLES
FOR PROJECT 9-1

Variable Name Definition
F(1,1) Frame 1, Line 1
F(1,2) Frame 1, Line 2
F(1,3) Frame 1, Line 3
F(1,4) Frame 1, Line 4
F(1,5) Frame 1, Line 5
F(1,6) Frame 1, Line 6
F(1,7) Frame 1, Line 7

F(2,2) Frame 2, Line 2




DRAW
FULL

FRAME 1

DO LONG
TIME
DELAY

DRAW
FRAME 2,
LINE 2

DO SHORT
TIME >
DEL AY

BLINK
SEQUENCE

DRAW
FRAME 1,
LINE 2

FIGURE 9-2 Flowchart form of an
animation sequence —

idea is to call the routine that draws Line 2 of Frame 2, do a brief time
delay, and then ‘“‘reopen’’ the robot’s eyes by calling the routine that
draws Line 2 of Frame 1. Compare the BLINK SEQUENCE in the flow-
chart with the operations designated in lines 125-135 in the program. At
the conclusion of the BLINK SEQUENCE, program line 140 loops opera-
tions back to line 120 to do the long time delay again.

It is important to note that the full Frame 1 is drawn just one time,
at program line 115. After that, the animation effect is achieved by your
tampering with just Line 2 in Frames 1 and 2. That is the essence of
limited-segment animation. As mentioned earlier in this discussion, the
technique of limited-segment animationisn’t really critical to the satisfac-

117



118 CHAPTER 9

tory operation of this particular animation sequence; one could write the
control routine so that program line 135 was a GOTO 115. That way, the
robot’s eyes would be reopened by virtue of the fact that the entire Frame
lisredrawn. ] have demonstrated the operation of limited-segment opera-
tion from the very start, so the control routine is written so that the eyes
are reopened by your drawing only Line 2 of Frame 1.

Perhaps you find the timing of the blinking-robot animation a bit too
regular. In that case, simply rewrite program line 115 to read:

115 T=RND(1000):GOSUB 950

That way, the intervals between blinks is randomly selected; if there is
such a thing as a realistic robot blink, this comes closer to achieving that
impression.

PROJECT 9-2

Implement all six frames in Fig. 9-1 to create an animation sequence
that shows the robot turning its head in both directions and blinking its
eyes. See a suggested routine in Listing 9-2.

10 REM %X PROJECT 9-2

15 REM BLINKINGy HEAL-TURNING ROBOY
20 CLEAR S12IDEFSTR F

25 CLSIPRINT @ 396y "BLINKING AND HEAD-TURNING ROBOT ANIMATION"
30 GOSUB 40900

100 REM %x CONTROL ROUTINE

105 CLS

110 =284

115 GOSUB 1000

120 T=RND{1000):1GOSUR 950

125 GOSUR 1022:7=251606UR 9501G05UE 1012
130 T=RND(1000)!GOSUR 930

135 GOSUBR 1031:GOSUB 1032

140 T=RNI{1000):C0OSUR 950

145 GOSUE 1042:T=251GOSUR 9501GOSUR 1032
150 T=RNI{ 1000 )IGOSUB 950

155 GOSUR 1011:GOSUR 1012!1G0SUE 10313605UB 1032
160 T=RND(1000)IGOSUE 930

165 GOSUB 1062:T=251G0SUR 950iGOSUE 10652
170 T=RND{1000):GOSUR 950

175 GOSUR 1011:1G0OSUB 1012

180 GOTO 120

950 FOR Th=0 TO TINEXT TIOZRETURN

1000 REM %% DRAWING SUBROUTINES

1001 FOR L=1 TO 7iFRINT € DHo4%(L-1)»FCOLyL)7 INEXT LIRETURN
1011 FRINT @ DyF(1s1)3 RETURN

1012 PRINT @ D464,F(1s2)5 IRETURN

1022 PRINT @ D+64,F(252)5 SRETURN

1031 FRINT € DyF(3s1)3IRETURN

1032 PRINT € D+64sF(3,2)5 IRETURN

1042 PRINT @ D4+64yF(4,2)3 tRETURN

1051 PRINT @ Dy F(3Ts1)5 IRETURN



1052
1062
4000
4001
4002
4022
4031
4032
4042
4051
4952
4062
4499
4500
4503
4510
4515
5000
5011
5012
5013
5014
5015
5016
5017
5018
5022
5031
5032
5042
G051
S50
5062

FRINT @ D+é4+F( 59205 JRETURN

PRINT @ D4+64sF (692 ),.RETUP

REM %% STRING-FPACKING SUBROUTINE

L=1

GOSUB 45001F(1yL)=FIIF A=0 THEN L=L+11GOTO 4002
GOSUR 45003F(2,2)=F

GOSUB 4500:F( 341 )=F

GOSURB 45003F( 3,2 )=F

GOSUB 45003F( 4,2 )=F

GOSsuB 45003F(571)=F

GOBUB 4500tF(5s2

GOSUB 45003F( 4652 ) F

RETURN

F=|’ "

READ AYIF A=0 OR A=1 THEN RETURN

IF A>0 THEN F=F+CHR$(AIIGOTO 45038
REAL BIF=F+STRINGS(ABS(A)E)IIGOTO 4503
REM %% DATA LISTINGS

DATA 19551605144:195,0

DATA 19351365191518791835191:132,193,50
DIATA 193:,188+172+19051895156+188,19350
DATA 130+1915170,189518791495191512750
DATA 130y131+18651499170518151315129490
DATA 1949170149517 0+14940

DATA 193y-2,1315129,1305~-2513150

DATA 1

DATA 193+1365-4+1915132+19351

DATA 195:176519651

DATA 1945~-25183y~2+191»1%9451

DATA 194y-45191+19491

DATS 1965176219591

52 DATA 194,-25191,-2+187 11941

DATA 1945-4517151%4»1

LISTING 9-2 Programming for Project 9-2

The sequence of operations in the control routine and, indeed, the
overall design of the animation program are structured around a general
plan of what the robot is to do and when it is to do it. Basically, the overall
sequence of events evolves from this preliminary outline:

by

© PN

13

. Draw full Frame 1.
. Look straight ahead for a while.

Blink eyes while looking straight ahead.
Continue looking straight ahead for a while.
Look to the left.

Continue looking to the left for a while.
Blink eyes while looking to the left.
Continue looking to the left for a while.
Look ahead.

Look to the right.

. Continue looking to the right for a while.

. Blink eyes while looking to the right.
Continue looking to the right for a while.

119



120 CHAPTER 9

14. Look straight ahead.
15. Repeat the sequence from Step 2 above.

Such a list of events represents the first major step in planning the pro-
gram—assuming, of course, that the frames have been completely defined
as in Fig. 9-1.

The next step is to expand on that working outline, spelling out
specific frame numbers and providing more details concerning timing:

1. Draw full Frame 1.
2. Do a long, random time delay with Frame 1.
3. Blink eyes while doing Frame 1.
A. Do Frame 2.
B. Do a short, fixed time delay.
C. Do Frame 1.
. Do a long, random time delay with Frame 1.
. Do Frame 3.
. Do a long, random time delay with Frame 3.
. Blink eyes while doing Frame 3.
A. Do Frame 4.
B. Do a short, fixed time delay.
C. Do Frame 3.
8. Do a long, random time delay with Frame 3.
9. Do Frame 1.
10. Do Frame 5.
11. Do a long, random time delay with Frame 5.
12. Blink eyes while doing Frame 5.
A. Do Frame 6.
B. Do a short, fixed time delay.
C. Do Frame 5.
13. Do a long, random time delay with Frame 5.
14. Do Frame 1.
15. Repeat the sequence from Step 2 above.

M O

That expanded version of the animation outline clearly specifies
which frames are to be used and where they are to be fit into the sequence
of operations. It also designates two kinds of time delays: a long, random
delay and a short, fixed delay. In a sense, this outline is the skeleton for
the control routine in the BASIC programming.

The process of transforming the outline into a working program
would be rather straightforward if we were drawing each frame com-
pletely. It is possible to write a BASIC program routine for drawing each
of the six frames, then do a GOSUB statement to draw them on the



A First Look at TRS-80 Animation 121

screen. However, here we are illustrating applications of limited-segment
animation—drawing only those portions of a frame that change from one
frame to the next. Thus, there is another important step in the planning
phase of the program: determining which portions of a frame must be
redrawn when making a transition from one frame to the next.

Using the previous animation outline as a guide, you can see that the
following frame transitions must take place:

Step 3A. Frame 1 to Frame 2
Step 3C. Frame 2 to Frame 1
Step 5. Frame 1 to Frame 3
Step TA. Frame 3 to Frame 4
Step 7C. Frame 4 to Frame 3
Step 9. Frame 3 to Frame 1
Step 10. Frame 1 to Frame 5
Step 12A. Frame 5 to Frame 6
Step 12C. Frame 6 to Frame 5
Step 14. Frame 5 to Frame 1

Then compare these sets of frame transitions with the actual draw-
ings in Fig. 9-1. The idea is to determine which lines must be changed in
order to alter the frame transition.

Step 3A. Draw F(2,2)
Step 3C. Draw F(1,2)
Step 5. Draw F(3,1), F(3,2)
Step TA. Draw F(4,2)
Step 7C. Draw F(3,1)
Step 9. Draw F(1,1), F(1,2)
Step 10. Draw F(5,1), F(5,2)
Step 12A. Draw F(6,2)
Step 12C. Draw F(5,2)
Step 14. Draw F(1,1), F(1,2)

Recall that the first numeral in the parentheses specifies the frame
number and the second specifies the line within that frame. Thus Draw
F(5,1) literally means: Draw Line 1 of Frame 5.

At this point in the analysis, you have a clear idea of what drawing
routines you will need for the desired animation sequence. It is an effi-
cient, limited-segment analysis that uses time for drawing only those por-
tions of a figure that change from one frame to the next.

Putting those frame numbers into numerical sequence, one can see



122 CHAPTER 9

what drawing subroutines are required and the names of string variables
that have to be packed.

F(1,1), F(1,2), F(2,2), F(3,1), F3,2), F(4,2), F(5,1), F(5,2), F(6,2)

Lines 3 through 7 never change; thus the Frame-1 version of them applies
throughout the program.

Referring back to the program in Listing 9-2, all the lines for Frame
1, including the F(1,1) and F(1,2) variables needed for the special anima-
tion sequences, are string-packed in lines 4001 and 4002, using DATA
from lines 5011 through 5018. The full-frame drawing subroutine for
Frame 1 is located at program line 1001, and it is called by the control
routine at line 115.

The remaining seven string variables cited in the list—F(2,2), F(3,1),
F(8,2), etc.—are packed separately in program lines 4022 through 4062,
and they use DATA lines 5022 through 5062.

The drawing subroutines for all the special strings are found at lines
1011 through 1062, and they are called at the appropriate times from the
control routine,

Turning to the control routine, it begins by clearing the screen in line
105 and setting the displacement value for the figure in line 110. After
that, the control routine follows the animation analysis:

Line 115: Draw full Frame 1 (Step 1)

Line 120: Do a long, random time delay (Step 2)
Line 125: Blink eyes while doing Frame 1 (Step 3)
Line 130: Do a long, random time delay (Step 4)
Line 135: Do Frame 3 (Step 5)

Line 140: Do a long, random time delay (Step 6)
Line 145: Blink eyes while doing Frame 3 (Step 7)
Line 150: Do a long, random time delay (Step 8)
Line 155: Do Frame 1, followed by Frame 5 (Steps 9 and 10)
Line 160: Do a long, random time delay (Step 11)
Line 165: Blink eyes while doing Frame 5 (Step 12)
Line 170: Do a long, random time delay (Step 13)
Line 175: Do Frame 1 (Step 14)

Line 180: Repeat the sequence from Step 2 (Step 15)

It is quite likely that this procedure for developing an animated se-
quence appears terribly cumbersome. Broken down into a detailed step-
by-step analysis, it probably is a cumbersome process, but it really isn’t a
very difficult one. In summary, it goes like this:



ATTIISLLOOK Al | HO~-0U ANHTIAaTion 1490

1. Draw the frames you think you will need to accomplish the anima-
tion sequence.

2. Make up a step-by-step listing of the frames to be shown, giving
some indication of their timing.

3. Determine the frame transitions—which frames are to follow
which.

4. Determine which lines within the frame transitions must be
changed.

5. Write a program that packs the required strings and draws them
as required.

6. Compose a control program that implements the original anima-
tion plan.

7. Try the program, debugging and modifying as necessary and
desirable.

ORGANIZING AND EDITING ANIMATION
SEQUENCES

A computer artist must learn to live with some serious constraints that
are imposed by the nature of his or her equipment and the principles of
computer programming. There is, however, one distinct advantage over
traditional artistic and animation techniques—ease of editing. It is far
easier to form and compose static images with a computer than to revise
drawings and paintings that are committed to paper and canvas. In the
context of composing static pictures on the CRT, ease of editing and in-
line composition was a theme introduced earlier in this book. Now, the
same idea of on-line spontaneity applies to the creation of animated se-
quences.

The general idea is to compose a single animation sequence, get it
into the computer, and try it out. When you are satisfied with it, add
another sequence and get it working to your satisfaction. Then blend the
two together to come up with a choreography of two sequences. Any
number of independent animation sequences can be strung together in
this way; what’s more, individual elements within a sequence can be re-
fined and extended to create some rather elaborate animations.

Doing the animation job on a piecemeal basis, working the individual
parts together and experimenting with some of the finer details, offers the
possibility of making some interesting and spontaneous ideas that might
be lost if the entire system were developed on a worksheet and committed
to a program from the very beginning.

As you might imagine, developing such animation sequences in-line
and in a piecemeal fashion can result in some cumbersome programs.
There is no harm done if the sequences run quickly enough to satisfy you,



124 CHAPTER 9

but a cumbersome, pieced-together program sometimes runs too slowly in
places to create the desired effect. In such cases, the resulting program
has to be refined a bit; redundancies and time-consuming program
statements have to be eliminated or combined in such a way that they run
faster.

The following series of projects shows how to develop a series of
animation sequences, string them together to produce a more complex
performance, and then refine the result to produce a cleaner and more effi-
cient program.

The subject of the examples is the same little robot figure that was
used earlier in this chapter. The goal in this instance is to create an anima-
tion sequence that shows the figure acting as a traffic policeman. The
robot will observe the traffic for a while, turning its head from side to side
and blinking its eyes. Then the figure will stroll to the middle of the street,
turnits entire body to the left, and hold out an arm with a traffic-stopping
gesture. After stopping the traffic for a while, the figure turns its back to
the viewer, strolls back to the curb, turns around, and begins observing
the traffic again.

Since we are still dealing with single-figure animation, the robot
figure will be the only one appearing on the screen; the traffic will remain
purely imaginary. The matter of multiple-figure animation must await a
later discussion.

Computer animations need not be developed in the exact order they
are to appear in the final product. Creating the effect of a walking figure is
one of the most challenging animation tasks, so I decided to deal with it
first. It will be fit into the proper scene later on.

PROJECT 9-3

Listing 9-3 uses the frames shown in Fig. 9-3 to create the figure’s
walking sequence. Type in the program as shown here, give itatry, and
if you are satisfied it is working properly, save it on tape or disk for later
use.

1o REM k% PROJECT 9-3

15 REM WALKING TGO THE MIDDLE OF THE STREET
20 CLEAR S12IDEFSTR F

25 CLSIFRINT @ 405,"ROBOT TRAFFIC CONTROLLER"
30 GOSUEB 4000

100 REM xx CONTROL ROUTINE

105 CLS

110 D=284

115 GOSUR 1000

122 GosUR 1020

123 GOSUE 1000

124 GOSUR 1030

125 GOTO 119



1000 REM XX DRAWING SURROUTINES

1001 FOR L=1 TO 7iPRINT @ DH464%(L-1)sF(LsL )3 INEXT LIRETURN
1020 FOR L=3 TO ZIPRINT @ D464%C(L~-1)sF(2yL )5 INEXT LIRETURN
1030 FOR L=3 TO 7IFRINT @ D4+64%(L-L)sF(3,L )5 INEXT LIRETURN
4000 REM X% STRING-FACKING SURROUTINE

4001 L=1

4002 GOSUB 4500:F(1,L)=FIIF A=0 THEN L=L+1:G0TO 4002
4020 L=3

4021 GOSUR 4500:F(2,L)=F1IF A=0 THEN L=L4+1:G0T0O 4021
4030 L=3

4031 GOSUR 4500F(3.L)=FI{IF A=0 THEN L=L+1:GOT0 4031
4499 RETURN

4500 F=""

4505 READ AIIF A=0 OR A=1 THEN RETURN

4510 IF A0 THEN F=F+CHR$(AR)IIGATO 4508

4515 REAL BIF=F+STRINGH(ABS{A)sR)IIGOTO 43505

5000 REM %X DATA LISTINGS

G011 DATA 197:160r1449197490

5012 DATA 1935,13691915187-183+191 132519550

5013 [ATA 195,1885172,5,190,1892156+188+195+0

5014 DATA 1945130519151 7051895187 5149012151299 194 40
5015 DATA 19451305 13151865149917018151315129519490
S016 DATA 12621709 14991705149519640

S017 DATA 195y~-2+1315129+1305-25131+195,1

5023 DATA 195,188,172,190,1895154:188,19540

5024 DATA 1945138918951 709-2525+191129519540

G029 DATA 1946918671495 1305 1215180419550

5026 DATA 19691702149y 1285191 5176514419440

5027 DATA 195,-2,131,129,198+1

033 DATA 195,188,172+190518751565188:1%744590

G034 DATA 195+1309191 9252551492190, 133,12840

503% DATA 195+1845191512951704,181919550

5036 DATA 1945160+1765191512891705149519550

5037 DATA 198,130s-25,1315194+1

LISTING 9-3 Programming for Project 9-3

e}
-
-
-
)

Frame | -~ Frame 2 Frame 3

FIGURE 9-3 Frames 1,2 and 3—the strolling-forward sequence-for Pro-
ject 9-3

125



126 CHAPTER 9

This is really just a testing program, although it is fun to watch the
little robot’s rolling gait. The real purposes are to double-check the selec-
tion and entry of the DATA elements and to see whether or not the choice
of frames is satisfactory.

The framing sequence goes like this:

Frame 1
Frame 2
Frame 1
Frame 3
Repeat from Step 1

G w0 b0 =

Looking at the program listing, you can see that Frame 1 is string-
packed at lines 4001 and 4002, using DATA from lines 5011 through
5017. The seven lines in that frame are assigned to variables F(1,1)
through F(1,7). Frame 1 is drawn by calling the subroutine at line 1001.

Since the first two lines in Frames 2 and 3 are identical to their
counterparts in Frame 1, there is no need to take up valuable drawing time
for those two lines (provided, of course, that Frame 1 is always drawn
first). Thus the strings for Frames 2 and 3 are packed and drawn from
lines 3 through 7.

Frame 2 is packed at program lines 4020 and 4021, using DATA
from lines 5023 through 5027. It is drawn from line 1020.

Frame 3 uses the same general programming format. It is packed at
line 4030 and 4031, it uses DATA from lines 5033 through 5037, and it is
drawn by calling its drawing subroutine at line 1030.

The walking sequence is choreographed by the control routine, lines
115 through 125.

You are invited to play with the control routine, doing things such as
inserting a time delay while showing Frame 1. Try experimenting with
short time delays between each frame; the idea is to slow down the walk-
ing as much as possible without making the sequence appear jerky. What-
ever you decide to do with the control routine, just keep in mind the
GOSUB line numbers for drawing the frames:

Frame 1: GOSUB 1000
Frame 2: GOSUB 1020
Frame 3: GOSUB 1030

The matter of getting the robot figure to stroll back to the curb calls
for adding just one more frame, Frame 4 in Fig. 9-4. That shows the robot
from a rear view. Comparing it with the front-on view in Frame 1, you can
see that only lines 2 and 4 are different. Thus the strings for lines 1, 3, and



FIGURE 9-4 Frame 4 required for
the strolling-back se-
quence in Project 9-4

PROJECT 9-4

The animation we are gradually concocting here calls for having the
robot figure stroll to and from the curb. Project 9-3 took care of the
strolling-from-curb sequence, and Listing 9-4 shows the program as it
is extended to include a strolling-back-to-curb sequence.

19 REM %% PROJECT 9-4

15 REHM WALKING TO AND FROM THE CURE

20 CLEAR S12:DEFSTR F

25 CLSIFRINT @ 405,"ROBOT TRAFFIC CONTROLLER”

30 GOSUR 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 D=284

115 FOR N=0 T0 7

120 GOSUE 10003COSUR 1020:1G0SUR 10001GOSUR 1030

125 NEXT N

130 GOSUR 1000:T7T=5001GOSUE 730

135 FOR N=0 7O 9

140 GOSUR 10401GOSUR 1020:1GOBUR 10401G0SUR 1030

145 NEXT N

150 GOSUB 1040:T=500:G0SUR 750

155 GOTO 115

950 FOR Th=0 TO TINEXT TDIRETURNM

1000 REM %% DRAWING SUBROUTINES

1001 FOR L=1 TO 7iFRINT @ DH&4R{L-1)sF(1sL )5 INEXT LIRETURN
1020 FOR L=3 TO 7IFRINT € DH64%(L-1)sF(2yL )3 INEXT LIRETURN
1030 FOR L=3 TO ZIPRINT @ D4+64%(L-1)yF{3sL )5 INEXT LIRETURN
1040 FOR L=1 TO 7IPRINT @ D+64%(L-1)sF(4,L )5 INEXT LIRETURN
4000 REM %X STRING-PACKING SUBROUTINE

4001 L=1

4002 GOSUE 450031FC1,L)=F{IF A=0 THEN L=L+131G0T0 4002

4020 L=3

4021 GOSUER 450031F(2,L)=Fi1IF A=0 THEN L=L+131G0TO 4021

{cont.}

127



4030 L=3

4031 GOSUR 4500IF(3-L)=FiIF A=0 THEN L=L+1:G0T0O 4031
4040 F(4s10=FCLs1)FC453)=F(1,3)

4041 FOR N=5 TO 73F(4yNI=FCL1sNIINEXT N

4042 GOSUB 4500:F(4,2)=F

4044 GOSUR 45001F( 4,4 )=F

4499 RETURN

4500 F="n

4505 READ A!IF A=0 OR A=1 THEN RETURN

4510 IF A0 THEN F=F+CHR$CA)DIIGOTO 4505

4515 READ BIF=F+STRINGH(ABS(A ) E)IGOTO 4505

5000 REM %% DATA LISTINGS

G011 DATA 1975160:144,5197,0

5012 DATA 195513651915187,183,19151325195,40

SO13 DATA 195,1885172519051895156,188+195,0

5014 DATA 194513051915170:18%187:149,1915129,194+0
5015 DATA 1945130513151865149517051815131:129y19440
G016 DATA 196:1705149517051495194450

G017 DATA 195,-25131,1295130-2513151951

5023 DATA 1955188,172,1905189,154651885195,0

G024 DATA 194,138+518951705-2525:1915129+195,0

5025 DATA 196518651495130+1915180,195,0

S026 DATA 1965170514951285191+176+144+19450

S027 DATA 1955,-2,131,129,198,1

G033 DATA 195,188,172,190+18951545188+17420

G034 DATA 19551305191+ -252551495190133,12850

G035 DATA 195,184,191,129:1704+1815195,50

5036 DATA 194516091769191512851705149519%5,0

5037 DATA 1985130,-25131519451

5042 DATA 1955136545191+ 132519550

5044 DATA 19451305191517051785177 71499191 5129+194,1

LISTING 8-4 Complete programming for Project 9-4

5 through 7 can be packed by equating them with those lines in Frame 1;
there is no need to duplicate the DATA listings for those lines. See how
the lines are equated in program lines 4040 and 4041.

Lines 2 and 4 in Frame 4 are packed by program lines 4042 and 4044,
using the DATA in lines 5042 and 5044.

Frame 4 is drawn by calling the subroutine at program line 1040.

The figure is made to appear walking back to the curb by our taking
advantage of the limited-segment nature of Frames 2 and 3. Neither of
those frames affects the special elements that distinguish the robot’s
front and back—the lack of eyes in line 2, and the square-U shape in line 4.
The framing sequence for making the robot stroll back to the curb is thus:

1. Frame 4
2. Frame 2
3. Frame 4
4. Frame 3
5. Repeat from Step 1

The control routine is set up to display the two currently available se-
quences: making the robot stroll toward the viewer and then away from



the viewer. Lines 115 through 125 execute the strolling-forward sequence
ten times. Line 130 does a brief time delay, and then lines 135 through 146
execute ten cycles of the strolling-away sequence. After that, line 150
causes the figure to stand with its back to the view for a moment, and then
line 155 loops the whole program back to line 115 to begin the two se-

quences all over.

To check your understanding of how the framing works, try invent-
ing a few sequences of your own. Draw the frames by doing the following

GOSUBs:

A First Look at TRS-80 Animation

Frame 1: GOSUB 1000
GOSUB 1020
GOSUB 1030
GOSUB 1040

Frame 2:
Frame 3:
Frame 4:

PROJECT 9-5

Listing 9-5 expands the program to include a third animation sequence
that is built around Frames 5, 6, and 7. See Fig. 9-5. The idea is to show

the figure turning around to face the left-hand side of the screen.

10 REM %% PROJECT 9-3

18 R

EM

WALKING FORWARD AND TURNING TO LEFT

20 CLEAR S12!DEFSTR F

25 CLSIPRINT @ 405,"ROBOT TRAFFIC CONTROLLER"
30 GOSUB 4000
REM %% CONTROL ROUTINE

100
105
110
115
120
125
130
133
140
145
150
750
1000
1001
1020
1030
1040
1050
1060
1070
4000
4001
4002
4020

CLs

=284

FOR N=0 T0 9
GOSUE 10003

NEXT

N

GOSUER 1020 !GOSUR 10003GOSUE 1030

GOSUB 10003 T=5001G08UR 250

GOSUR 1030:GOSUR 1050 :GOBUR 10601G0SUE 10790
T=500{GCOSUER 9250

GOSUR 106031G0SUER 10503GOSUR 10301G05UE 1000

GOTO 115
FOR ThO=0 T0
REM ¥X DRA
FOR L=1 TO
FOR L=3 TO
FOR L=3 T0
FOR L=1 TO
FOR L=1 TO
FOR L=1 T0
FOR L=1 TO
REM X% STR
L=1

TINEXT TOIRETURN

WING SURROUTINES

ZIPRINT @ D4Ho4X(L~1)sFOLsL )5 IHEXT LIRETURN
ZIPRINT @ DEG4X(L-1)yF(2:L )5 INEXT LIRETURN
CTIPRINT @ DH64XCL-1)sF(3sL )5 INEXT LIRETURN
JIPRINT @ DHe4%(L-1)sF(45L 05 INEXT LIRETURN
ZIFRINT @ DHE4%(L~-1)2F (3L )3 PNEXT LIRETURN
ZIPRINT @ DH64X(L~1)sF{6sL )5 INEXT LIRETURN
ZIPRINT @ D464%(L-1)F(7sL)5 INEXT LIRETURN
ING-FACKING SURROUTINE

GOSUE 450031F(1sL)=FIIF A=0 THEN L=L+11G0OTO 4002

L=3

{cont)



4021
4030
4031
4040
4041
4042
4044
4050
4951
4060
4061
4070
4071
4499
4500
4505
4510
4515
5000
5011
5012
5013
5014
5015
5014
5017
5023
5024
5025
5026
5027
5033
5034
5035
5036
5037
5042
5044
5051
5052
5053
5054
5055
5056
5057
5061
5062
5063
5064
5065
5066
5067
5071
5072
5073
5074
5075
5076
5077

GOSUB 43001F(2yL)=FIIF A=0 THEN L=L+1:GOTO 4021
L=3

GOSUB 43001F(3,L)=FIIF A=0 THEN L=L+1!:G0TO0 4031
FO4s1)=F(121)FC453)=F(1+3)

FOR N=5 TO 7iF(4yN)=F(1sNIINEXT N

GOSUB 45001F(4,2)=F

GOSUR 450031F( 444 )=F

L=1

GOBUR 45001F(S5,L)=F{IF A=0 THEN L=L+1:G0T0 4051
L=1

GOSUB4S00IF(&yL)=FIIF A=0 THEN L=L+41:G0T0 4061
L=1

GOBUR 43001F(7,L)=FIIF A=0 THEN L=L+1:60T0 4071
RETURN

F:'I H

READl ATIF A=0 OR A=1 THEN RETURN

IF AX0 THEN F=F+CHR${ADICOTO 4505

READ BIF=F+STRINGH( ABS(A)»E)IIGOTO 4505

REM X% DATA LISTINGS

IATA 19751605144,19750

DATA 1931365191187, 183+191:132,195,0

DATA 1955188,172,5,1905189915651885195,0

UATA 194+13051915170y1895187 514951915129 519440
DATA 194413051315186514951705181513151295194+0
DATA 1949170514951705 1495196450

DATA 195y-2513151295130,~251315195,1

DATA 19551885172,19051895156,1885,195,0

DATA 19451385189+ 1705-2,25,19151295195+0

DATA 196y186514951305191,180,19549

DATA 196917091495128519151761144:19440

DATA 195:-2+1315129519851

LATA 1955188517251905189,156+188519450

DATA 19591305191 9-2525,14991905133,128+0

DATA 195+184,+191,1295170518B1519540

DATA 1945160+176+19151285170514951950

DATA 198+130,-2,131+19451

IATA 19551365-4219151325195,50

DATA 1949130519191705178517721495191+129+1941
NATA 1974176919850

DATA 19691835191+1875191519620

DATA 195,1845188,19051895,17251805 12550

DATA 1955175+191418B2,191,18451595129+194450
DATA 19651705 -251915130»131+19550

DATA 195-16021869-251915197 40

DATA 198+1315129+19651

DATA 197176519850

DATA 19671915187 5,-2,191+19650

DATA 196+160,190,189,180519640

DATA 1965178y-2519151595189+1445194+0

DATA 197,186:149519750

DATA 197+17051915180+19450

DATA 196y~221315129,197 1

DATA 1975176519850

DATA 196+1835,~351915196+0

DATA 196:1605190518%:180,19650

DATA 19691755, ~2+1915159+1946+0

DATA 197,186y1494197 50

DATA 19791705149919750

DATA 1926y-2+1315129419751

LISTING 9-5 Complete programming for Project 9-5



ame D Rrome B Frg

FIGURE 9-5 Framing sequence for doing a 90-degree turn to face the left
side of the screen, Project 9-5

Here is how those frames are packed and drawn:

Frame 5: Packed into string variables F(5,1) through F(5,7) by pro-
gram lines 4050 and 4051, using DATA in lines 5051
through 5057; drawn by calling the subroutine at line
1050.

Frame 6: Packed into variables F(6,1) through F(6,7) by program
lines 4060 and 4061, using DATA in lines 5061 through
5067; drawn by calling the subroutine at line 1060.

Frame 7: Packed into variables F(7,1) through F(7,7) by program
lines 4070 and 4071, using DATA in lines 5071 through
5077; drawn by calling the subroutine at line 1070.

The framing sequence for creating the impression that the robot
figure is turning 90 degrees to the left takes advantage of the already-
available Frame 3 as well as new Frames 5, 6, and 7. Here is a nice framing
sequence:

1. Start from Frame 1.
2. Draw Frame 3.
3. Draw Frame 5.
4. Draw Frame 6.
5. Draw Frame 7.

Once that is done, getting the figure to turn 90 degrees to face straight
ahead is a matter of running this frame sequence:

131



132 CHAPTER 9

1. Start from Frame 7.
2. Draw Frame 6.
3. Draw Frame 5.
4. Draw Frame 3.
5. Draw Frame 1.

The control routine in the current program listing blends these two
sequences with the stroll-ahead sequence that was described earlier. The
figure begins by stepping about 20 paces straight ahead (lines 115
through 125). Then there is a brief pause (line 130), followed by the turn-to-
face-left sequence (line 135). The figure pauses again in that position (line
140), then it turns 90 degrees to face forward again (line 145). After that,
the routine simply loops back to begin the scene all over from the begin-
ning.

Notice how we are able to take advantage of a frame that was defined
earlier in the development process—Frame 3. Using that frame in con-
junction with the new ones creates a smoother and more interesting turn-
ing effect, all with no additional programming work.

PROJECT 9-6

The original scenario calls for having the robot figure stroll to the mid-
dle of the street, turn 90 degrees to the left, then raise an arm as though
stopping some traffic. The arm-raising (and lowering) frames are
shown in Fig. 9-6. An animation program that uses those frames is
shown here as Listing 9-6.

NOTE: Revise line 20 to read as shown here.

10 REM XX PROJECT 9-6

15 REM WALKINGy TURNING: LIFTING ARM

20 CLEAR 1024 I1DEFSTR FIDIM FO10,7)

25 CLSIFRINT @ 403,"ROBOT TRAFFIC CONTROLLER"
30 GOSUR 4000

100 REM ¥k CONTROL ROUTINE

105 CLS

110 D=284

115 FOR N=0 T0 9

120 GOSUE 1000:GOSUR 10201GOSUR 10001G05UR 10390
125 NEXT N

130 GOSUR 1000:T=5001GOBUR 950

135 GOSUR 1030:1GOSUR 1050 1GOBUR 10601G05UE 1070
140 T=501GOSUR 950

145 GOSUER 1080:GOSUR 1090

150 T=50031C0BUB ?30:1GOSUR 11001T=251G0SUE 980IG05UR 1090
185 T=500:1GOSUER 95¢

200 GOSUR 1080:1GOSUR 1070

205 T=100:GOSUER 950

210 GOSUR 10601GOSUR 1030:G0OSUR 1030 1GOSUR 1000
21% GOTO 115

950 FOR Th=0 TO TINEXT THIRETURN



1000
1001
1020
1030
1040
1050
1060
10790
1080
1090
1100
4000
4001
4002
4020
4021
4030
4031
4040
4041
4042
4044
4050
4051
4040
4061
4070
4071
4080
4081
4090
4091
4092
4100
4499
4500
4505
4510
4515
5000
5011
5012
5013
5014
5018
5016
5017
5023
5024
5025
5026
5027
5033
5034
5035
5036
- 5037
5042
5044
5051
5052

REM ¥¥ DRAWING SUBROUTINES

FOR L=1 TO 7i(FRINT @ DHé4%C(L~1)»
FOR L=3 TO 7I{PRINT @ D+64%(L-1)
FOR L=3 TO 7iPRINT @ D+64%(L-1)s
FOR L=1 TO 73PRINT @ D+64X(L-1)y
FOR L=1

FOR L=1

FOR L=1

FOR L=3

FOR L=2

PRINT @ DI+64sF(10,2)35 IRETURN

REM ¥% STRING-PACKING SUBROUTINE
L=1

F{lsl )4
sF{2L)
FC3sl)s
FC4sL )5

.
3
’
I3
3
+
+

NEXT LIRETURN
ENEXT LIRETURN
NEXT LIRETURN
NEXT LIRETURN
TO 7iFRINT @ DH64%CL-1)F(SyL)5 INEXT LIRETURN
TO 7$PRINT @ L4+64%(L~1)yF(65L 05 INEXT LIRETURN
TO 7iFRINT € DH44¥(L~-10sF(75L )5 ENEXT LIRETURN
TO 4IPRINT 8 DH64%(L~1)sF(8yL )5 INEXT LIRETURN
TO 4:PRINT @ D+o4X(L-1)sF(9yL )3 INEXT LIRETURN

COSUR 4500(F(1yL)=FIIF A=0 THEN L=L+11GOTO 4002

L=3

GOSUE 45003F(2,L)=FIIF A=0 THEN
L=3

GOSUB 4500:F(35L)=F!IF A=0 THEN
FOAs1)=F(1s1)IF(453)=F(1,3)

FOR N=5 TO 7iFC4sNDI=F(1sN)INEXT
GOSUR 45001F(4,2)=F

GOSUR 45001F(454)=F

L=1

GCOSUR 45001F(5sL)=F1IF A=0 THEN
L=1

GOSUR4S00IF( &L )=FIIF A=0 THEN
L=1

GOSUER 45001F(7sL)=FIIF A=0 THEN
L=3

GOSUR 450031F(8sL)=FIIF A=0 THEN
L=3

GOSUB 45001F(9sL)=FIIF A=C0 THEN
F(992)=F{(7+2)

GOSUR 45003F(10,2)=F

RETURN

F:II i

READ ALIF A=0 OR A=1 THEN RETURN
IF Ax0 THEN F=F+CHR$(AIIGOTO 450
READ BiF=F+STRING$(ABRS(A)sEIIGOT
REM %% DATA LISTINGS

DATA 19751609 1445197590

DATA 1955136519151875183,191,132
DATA 195,188,1725190,18%,1356,188

L=L+1:G0OTO
L=L+11GATO

N

L=L+1:160TO
L=L+1:G0TO
L=L+1:G0T0
L=L+11GOTO

L=L+1G0OTO

5

0 4305

219540
» 19540

4021

4031

40581
4061
4071
4481

4091

HATA 194513051911 70+189,187 71495171 ,129519450
IATA 194513051315 18B6y1495170-18151315129519440

[ATA 1969170514951705149919690
DATA 195y~291315129+1305-2,131»1
DATA 195,188,172,190,189,1565188
DATA 1945138518951 70,-2,25,191y1
DATA 196y18671495130:191,180,195
DATA 1969170+14951285191,1761144
DATA 195,-2+131,5129,198+1

DATA 195,188+172+190,189,156,188
DATA 1955130191, -2525,14951901
DATA 195,184519151295170,181,195
DATA 194,16071762191912851705149
DATA 198y1305-2,131+194,1

GATA 19591365 -4,19151325,19540

9391

y 195490
29119550
1 O
119440

11940
33,12840
A

y 19550

DATA 194,130,191 1709178917751495171 2129919451

DATA 197+176519850
DATA 196,1835191918751915196990

133

(cont.)



5033 DATA 195,184,188,190,189172,180,195,0
3054 DATA 1955175,19151825191,184,159,129, 1940
5055 [ATA 1761170525191 1305131519550
5056 DATA 19551604186+~ 2+1915197,0

5057 DATA 198,131,129,19651

5061 DATA 197+176+198:0

5062 DATA 19651915187 5-25191+1%9690

3063 DATA 196+160:190,1895180,19650

5064 DATA 1965175 -251915159»1895144519440
5065 DATA 19791865149519750

G066 DATA 19791704191 +18051960

G067 DATA 196»~2+131,129+197 41

3071 DATA 1975176219840

5072 DATA 1945183,-35191519450

G073 DATA 196+160519051892180,19640

5074 DATA 1965175,-25191515%:19650

G075 IATA 1975186514951 97 50

5076 DATA 197917051499 19750

5077 DATA 1965-2y131,129:197 51

5083 DATA 195+176,18850

5084 DATA 128,188+143,129s1

G093 DATA 1415~3,140,17240

5094 [ATA 19651

5102 DATA 1961-4519151

LISTING 9-6 Complete programming for Project 9-6

L2 | B 1
l H
3 ~' ]
L4
5
6
Frame 8 am f 3!

FIGURE 9-6 Framing sequence for raising an arm, Project 9-6

Frame 8 shows the figure with its arm partly raised, and Frame 9
shows the arm fully extended. Frame 10 is used for creating a blinking ef-
fect of the robot’s eyes: it will be able to blink while “holding up the
traffic.”

Since these three frames are always to follow a drawing of Frame 7,
they can be generated quite efficiently by using some limited-segment



A First Look at TRS-80 Animation 1o

framing techniques. Frame 8, for example, differs from Frame 7 only by
the appearance of lines 3 and 4. The two unique lines in Frame 8 are pack-
ed at program lines 4080 and 4081, using DATA from lines 5083 and 5084.
The elements of Frame 8 are drawn by calling the subroutine at line 1080.

Alternating between Frames 9 and 10 creates the impression that
the figure is blinking its eyes while holding up an arm. Thus, Frame 9
must include a string for its Line 2; otherwise the robot’s eyes would not
open after drawing Frame 10.

A complete traffic-stopping sequence might run this way:

[

o o

. Begin by drawing Frame 7.
. Raise arm.

A. Draw Frame 8 (GOSUB 1080).
B. Draw Frame 9 (GOSUB 1090).

. Do a long time delay.

Blink while holding up arm.

A. Draw Frame 10 (GOSUB 1100).
B. Do a very short time delay.

C. Draw Frame 9 (GOSUB 1090).
Do a long time delay.

. Lower arm.

A. Draw Frame 8 (GOSUB 1080).
B. Draw Frame 7 (GOSUB 1070).

This particular sequence is blended with walking and turning se-
quences in the current program listing:

e &6 ¢ & & 0 o & o & O

Take about 20 paces forward (lines 115-125).

Do a short delay while facing forward (line 130).

Turn 90 degrees to face the left side of the screen {line 135).
Do a short delay (line 140).

Raise the arm (line 145).

Do a fairly long delay, then blink (line 150).

Do a fairly long delay (line 155).

Lower the arm (line 200).

Do a short delay (line 205).

Turn 90 degrees to face forward (line 210).

Go back to the beginning, walking forward again (line 215).

When you have seen this suggested program at work, do take some
time to experiment with the control routine. Take advantage of the frames
that are now available, and create some animated scenarios of your own.



PROJECT 9-7

The scenario we are gradually developing here calls for the robot figure
toturnits back to the screen and walk to the curb. Then the figure must
make a 180-degree turn to face forward again. Listing 9-7 uses two
new frames, shown in Fig. 9-7.

NOTE: Modify the array DIMension as shown in line 20.

190 REM %% PROJECT 9-7

15 REM FULL TURN-AROUND SEQUENCES

20 CLEAR 1024IDEFSTR FIDIM F(15:7)

25 CLSIFRINT @ 405,"ROROT TRAFFIC CONTROLLER"
30 GOSUB 4000

100 REM X% CONTROL ROUTINE

105 CLS

110 D=284

115 GOSUR 10190

120 T=5001GO5UE 950

125 FOR N=0 TO 4

130 GOSUB 10201GOSUE 1010IGOBUR 1030 :G0SUR 1010
135 NEXT N

140 T=100:GOSUR 950

145 GOSUE 105031GOSUR 1060 1GOSUR 1070

150 T=100:GOSUR 250

135 GOSUEB 1080:GOSUE 1090:G05UF 1100

160 T=100:GOSUR 950

1465 GOSUB 1090:GOSUE 1080:GOSUR 1070

170 T=1003GOSUR 950

175 GOSUR 107031G0SUB 1110:{GOSUR 11203GOSUR 1040
180 T=100!GOSUE 950

185 FOR N=0 T0O 4

190 GOSUEB 1020:GOSUR 1040!GOSUER 1036 3G0SUR 1040
193 NEXT N

200 T=100:GOSUR 950

205 GOSUB 1120:GOSUE 11103:1GOSUR 1060 GOSUR 1070
210 GOSUR 1050:GOSUB 1030:C08UR 1010

215 60TO 115

930 FOR TD=0 TO TINEXT TOIRETURN

1000 REM X% DRAWING SUBRDUTINES

1010 FOR L=1 TO 7IFRINT @ DH64KCL~1)sFC Lyl )5 iNEXT LIKETURN
1020 FOR L=3 TO 7IFRINT @ DHS4X(L~1)sF( 2,005 INEXT LIRETURN
1030 FOR L=3 TO 7IFRINT @ DH64K(L-1)sF(3s0L )5 INEXT LIKETURN
1040 FOR L=1 TO 7IFRINT @ D4+64%(L—-1)yF( 45005 INEXT LIRETURN
1050 FOR L=1 TO 7IFRINT @ D464KCL-1)sF(5sL )5 INEXT LIRETURN
1060 FOR L=1 TO 7IFRINT @ D464X(L-1)sF(6sL )5 INEXT LIRETURN
1070 FOR L=1 TO 73IPRINT @ D464X(L-1)sF(75L)5 INEXT LIRETURN
1080 FOR L=3 TO 4I1FRINT B D+64K(L—-1)sF(8sL )5 INEXT LIRETURN
1090 FOR L=2 TO 4IPRINT @ D4+64XCL-~1)sF(9yL 25 INEXT LIRETURN

1100 PRINT @ IMH645F(10,2)5 tRETURN

1110 FOR L=1 TO 7!PRINT @ D4+&4%(L-1)sFC11sL)5
1129 FOR L=1 TO 73FRINT @ D4G4%(L-1)yF( 12,03
4000 REM %X STRING-FACKING SUBRROUTINE

4001 L=1

4002 GOSUR 4500IF(1sL)=F1IF A=0 THEN L=L+11G0T0 4002
4020 L=3

4021 GOSUB 45001F(2,L)=F1IF A=0 THEN L=L+1:1G0T0 4021
4030 L=3

4031 GOSUB 45001F(3,L)=F!IF A=0 THEN L=L+1:G0T0 4031
4040 Fl4s10=F(1s1)tF(4,3)=F(1+3)

ENEXT LIRETURN
PNEXT LIRETURN



4041
4042
4044
4050
4051
4060
4061
40790
4071
4080
4081
4090
4091
4092
4100
4110
4114
4115
4121
4124
41725
4499
4500
4505
4510
4515
5000
5011
5012
5013
5014
5015
5016
5017
5023
5024
5025
5026
5027
5033
5034
5035
5036
5037
5042
5044
5051
5052
5053
5054
5055
5056
5057
5061
5062
5063
5064
5065
5044
5067
5071

FOR N=5 TO 73$F(4yN)=F({1sNIINEXT N

GOSUB 45001F( 4,2)=F

GOSUB 4500 1F(4s4)=F

L=1

GOSUB 4500¢F(S,L)=FIIF A=0 THEN L=L+11G0OTO 4051
L=1

COSUB4500F(6,L)=F$IF A=0 THEN L=L+1!G0TO 4061
L=1

COSUR 45001F(7,L)=F{IF A=0 THEN L=L+1:1G0OT0 4071
L=3

COSUER 4500F(8sL)=FIF A=0 THEN L=L+1:G0OTO0 4981
L=3

COSUR 45001F(9yL)=FtIF A=0 THEN L=L+1:GOTD 4091
F(P22)=F(7+2)

GOSUR 4500:F(1052)=F
FCL1s1)=F(Se 1 )IFCLL»2)=F (10, 2)IF(11y3)=F{6+3)
GOSUR 4500:F(11s4)=F

FOR N=5 TO 7:F(L11sN)I=F( 6y NIINEXT N

FC12:1)=F( 15 1) F(1252)=F( 4, 2)1F(12y3)=F{ 2+ 3)
GOSUE 45003F(1254)=F

FOR N=5 TO 7IF(12yN)=F(2yN)INEXT N

RETURN

F': "o

READ AtIF A=0 OR A=1 THEN RETURN

IF AX0 THEN F=F+CHR$(AIGOTO 4505

READ BIF=F+STRINGS(ARS(AI»EB)IIGOTO 45035

REM %% DATA LISTINGS

DATA 19751609144519740

DATA 195,136v191.1875183+19151325,19550

DATA 195,188517251905189y156,1885195,0

DATA 194s130,191,1705189,187,14%9191512%»194+0
LATA 194s1305,131,186,1495170518151315129519450
DATA 1961170514951705149519650

DATA 195:-2+13151295130--2,131+195s1

DATA 195,188,172,1905189y15651882195,0

DATA 194,138-189,170,-2+255191, 129519550

DATA 196:1865149x1305191,180+19550

DATA 19621705,14951285191+1765144519450

DATA 195s-2,131+1294198+1

LATA 195:188s17251905189+156+1885194+0

DATA 195,130+191,-25255149,190+133,12840

DATA 195,184,191, 129+170,181519550

DATA 194,160517651919128s17051495,195+0

DATA 198+130+~2,131519451

DATA 19591369~-4r1915132:19340

DATA 19451305191,1705s17851779149,191512%9,19441
OATA 1972176419850

DATA 196:1183519151875191519650

[ATA 195,184,18851905,1895172,180,1935,0

[ATA 195s175,191+182,19151845159,129:19450
DATA 19691705-2191+1305131,195+0

DATA 195,16051865~25191 519750

DATA 198»1315129y196s1

DATA 1971769198590

[ATA 19651915187 9-24171519650

DATA 1965180519041895180519640

[ATA 196+175,-2219151595189 144519440

DATA 197+1865149519750

DATA 19751705191 +18051%650

DATA 1965-2y131,1295197 41

DATA 197176919850

{cont.)

137



5072 DATA 196518B3,~351915196+0

5073 DATA 19651605190:,1895180,19640

5074 DATA 19651755-251915159519690

5073 DATA 197:18B69149:19740

G076 DATA 1975170514951974+0

G077 DATA 196y~2¢1315129519751

S083 DATA 19%5:176+18850

5084 DATA 128,1885143,12951

T093 DATA 141,-3+140517250

5094 DATA 19691

5102 DATA 19654519151

9114 DATA 1969175519191765155,189 144,194 1
5124 DATA 194,138+18951705181,177519151295195,1

LISTING 9-7 Complete programming for Project 9-7

i\

FIGURE 9-7 Framing that must be added to do a turn to the rear

Frame 11 is packed by means of the instructions in lines 4110
through 4115. That packing operation takes advantage of the fact that
Line 1 is the same as Line 1 in Frame 5, Line 2 is identical to Line 2 in
Frame 10, Line 3 is the same as Line 3 in Frame 6, and Lines 5 through 7
are the same as those lines in Frame 6. Only Line 4 is unique, and its
variable F(11,4) is packed from DATA in line 5114.

Frame 12 also has a number of lines that are common to other
frames. See how they are equated in program lines 4121 and 4125. Again,
Line 4 is unique; it is packed by program line 4124 and uses DATA from
line 5124,



A First Look at TRS-80 Animation 139

Frame 11 is drawn by calling the subroutine at program line 1110,
and Frame 12 is drawn from line 1120.

Listing 9-7 is certainly an imposing piece of BASIC programming;
but if you have been evolving the programming and saving the results of
each project as suggested earlier, there really isn’t much work involved in
getting this program underway. Simply add the new drawing subroutines,
string-packing lines, and DATA listings for Frames 11 and 12. Then
rewrite the control routine as shown here.

The control routine in this case generates the following animation se-
quence:

Begin by drawing Frame 1 (line 115).

. Take about ten paces forward (lines 125-135).

. Do a short time delay (line 140).

Do a 90-degree turn to face left (line 145).

Do a short time delay (line 150).

. Raise arm (line 155).

. Do a short time delay (line 160).

. Lower arm (line 165).

. Do a short time delay (line 170).

10. Do another 90-degree turn to face curb (line 175).

11. Do a short time delay (line 180). v
12. Take about ten paces back to the curb (lines 185-195).
13. Do a short time delay (line 200).

14. Do a 180-degree turn to face forward (lines 205 and 210).
15. Repeat the scenario from Step 1 (line 215).

R N N

If you see any flaws in the appearance of the figure as it does the
turns in Steps 10 and 14, double-check the drawing subroutines, string-
packing lines and DATA elements for Frames 11 and 12.

PROJECT 9-8

Complete the scenario as shown in Listing 9-8. This includes several
new frames for making the figure blink its eyes and look from side to
side while facing forward. See those frames as they are partially drawn
in Fig. 9-8.

10 REM ¥¥ PROJECT 9-8

13 REM A COMPLETE ROBOT SCENARIO

20 CLEAR 1024 :i0EFSTR FIDIM F(15:7)

25 CLSIFRINT @ 405,"ROBOT TRAFFIC CONTROLLER™
30 GOSUB 4000

100 REM %X CONTROL ROUTINE

{cont.)



105
110
115
120
1235
130
135
140
145
150
155
160
165
170
175
180
185
199
195
200
205
219
215
220
223
230
235
2490
245
250
255
2690
265
270
273
280
285
750
1000
1010
1020
1030
1040
10590
10690
1079
1080
109¢
1100
1110
1120
1130
1140
1150
4000
4001

4002

4020
4021
4030
4031
4040
4041

cLs

=284
GOSUB
FOR S=1 TO KNI 4)

10190

T=RNDC1000):GOSUR 950
GOSUR 1130
T=RND{ 1000 )IGOSUR 950
GOBUE 1010:1G08UR 11590
T=RNI 1000 ):1GOSUR 950
GOSUR 1010
T=RND{ 1000 ) GOSUR 930
GOBUB 11401T=251G08UR 930IGOSUR 1010

NEXT §
FOR N=0 TO ¢

GOSUB 102031GOSUR 1010:GOSUER 1030:G0SUR 1010

NEXT N
T=250 {GOSUER 959

GOSUB 1020 1GOSUR 10501G0SUR 1060 1GOSUR 1070

T=250 1 GOSUR 750

GOSUER 1080:GOSUR 1090

FOR S=1 TO RNIK4)

GOSUR 1090

T=RND( G500 ) GOSUR 950

GOSUE 1310031 T=25!C0SUR ?303GOSUER 1090

T=RNI 500 )IGOSUR 950

NEXT

GOSUER 1080:1GOSUR
T=2501GO8UR 950

1070

GOSUR 1110:GOSUB 11201GOSUR 1040

T=2501G08UR 950
FOR N=0

TQ 9

GOSUE 1020:GOSUE 1040:1C05UE 10301G0SUR 1040

NEXT N
T=2501GOSUR 950

GOSUE 1120:GOSUR 1110:GOSUR 1070
GOSUE 1060:1GOSUB 1030 :GOBUER 10201G0SUE 1010

6070 115
FOR Th=0

REM
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

FRIN

FOR
FOR
FOR
FOR
FOR
REM
L=1

GOSUB 45001FC1,L)=FLIF

L=3

GOSUR 4500LF(2,L )=FIIF

L=3

Hononmou oot

¥ -rerererrerrr
I e e A ] S A TR A A A

0N B UM

TO TINEXT THIRETURN

TO
10
T0
T0
10
T0
T0
T0
T0

@
@
@
@
@
@
@

¥k DRAWING SUBROUTINES

DHO4KCL-1 )y FCLsL )5 INEXT
DHE4KCL-1)sF(25L)5 ENEXT
IH64KCL-1 )y FC3sL )5 INEXT
DH64%CL-1)sFC45L )5 INEXT
IHE4XCL-1)sFOSsL )5 INEXT
D+64X(L-1)yF(6sL 05 SNEXT
DHO4KCL-1) s F(7 9L )5 ENEXT
D464%(L-1)sF(ByL )5 INEXT
DHO4XCL-1) s FCPsL )5 INEXT

D464,F(10+2)5 IRETURN

TO 7IFRINT @ D+64%(L-1)sF{11sL )5 INEXT
TO 7iFRINT @ DH64%CL-1)yF(12yL )5 INEXT
TO 2IPRINT @ DH64XCL-1)yF( 1350 )5 INEXT
TO 2IFRINT @ DH64%CL~-1)sFC145L )5 INEXT
TO 2iPRINT @ DHA4¥CL~1)sFCOLSL )5 INEXT
STRING-FACKING SUBROUTINE

LIRETURN
LIRETURN
LIRETURN
LIRETURN
LIRETURN
LIRETURN
LIRETURN
LIRETURN
LIRETURN

LIRETURN
LIRETURN
LIRETURN
LIRETURN
LS RETURN

A=0 THEN L=L+1:GOTO 4002

A=0 THEN L=L+1:G0OT0 4021

GOSUR 45003F(3,L)=FIIF A=0 THEN L=L+1!GOTO 4031
F(4y1)=F(1s1)IF(4,3)=F{1,3)
FOR N=5 TO 7IF(4sNI=FCLsNIINEXT N



4042
4044
4050
4051
4060
4061
4070
4071
4080
4081
4090
4091
4092
4100
4110
4114
4115
4121
4124
4125
4130
4131
4140
4150
4151
4499
4500
4505
4510
4515
5000
G011
G012
5013
5014
5015
G016
5017
5023
5024
5025
5026
5027
5033
5034
50335
5036
5037
5042
5044
5051
5052
5053
5054
5055
5056
5057
5061
5062
5063
5064

GOSUR 45003F(4,2)=F

GOSUR 43001F( 4,4 )=F

L=1

GOSUR 4500 F(SyL)=FIIF A=0 THEN L=L+1:1G0OT0 4031
L=1

GOSUR4S00IF( 6L )=F{IF A=0 THEN L=L+11G0TO 4061
L=1

GOSUR 450031F( 7L )=FIIF a=0 THEN L=l+41160T0 4071
L=3

GOSUR 4500F(8,L)=FIIF A=0 THEN L=L+1:1G0TO 4081
L=3

GOSUR 45003F(9yL)=FIIF A=0 THEN L=L+1:G0OTO 4091
FCRy2)=F(7+2)

GOSUR 4500:F(1052)=F

FOL1o1)=F (81 )IF{ 1192 )=F{10s2)IF(1123)=F(6+3)
GOSUR 45003F{1154)=F

FOR N=5 TO0 7ZIF(L1sNI=F(AsNIINEXT N

FOL2s 1 0=F 0l 1 XSFCL122)=F{ 452 ) IF( 1253 )=F(2v3)
GOSUR 450031F (1224 )=F

FOR N=5 TO ZIFCL2sNI=FC2«NIINEXT N

L=1

GOSUR 45003FC13,L)=FIF A=0 THEN L=L+1:G0OT0 4131
FO1491 )=F (451 )01F(14:2)=2F(4,2)

L=1

GOSUB 4500:F(15,L)=FIIF A=0 THEN L=L+1:GOTO 4151
RETURN

F:" L

READ ALIF A=0 OR A=1 THEN RETURN

IF AXp THEN F=F+CHR$(ADIGOTO 4503

READ RIF=F+STRINCS(ABS(A)yEIIGOTO 4505

REM *% DATA LISTINGS

DATA 197:16051445197 40

DATA 1951365191 5187,183,191,132,1935+0

DATA 195:188s1725190,189»156518851750

DATA 194513051915 1705189518751499191 5129519450
DATA 19451305131,18651499170518191315129519450
DATA 1969170 14951705149519640

DATA 195:-2913151295130»-2513151951

DATA 195:188,172+190,18%5156+518821950

DATA 1945138518951 70,-25255171+1295195+0

UATA 196+186:149513021915180,19340

DATA 1965170514991285191+1765144519450

DATA 195,-2:1315129519851

[ATA 195:188,172,190,189,1562188,1944+0

LATA 19551305191 -25255149,190,1335128+0

HATA 19551845191 912951705181519550

[ATA 194:16091769191512851705149519540

DATA 1985130,~25131519451

DATA 195+136y-451915132+19550

DATA 1945130,191517051789177 2149219151295 194+1
DATA 1979176519840

DATA 19651835191 +1879191+19650

DATA 195,184,188,190,18%951725,1805195+0

DATA 19591755191,182519191845159:12%119440

IATA 19651705 ~25191+1305131,195+0

DATA 1951605186, -25191419750

DATA 198:,131y129:19691

UATA 197517651980

DATA 194691917187 9-22191419650

[IATA 196+160+19051895180519640

[ATA 1961175,-2519151595187+144,19450

{cont)

141



50465 DATA 197+1865149519740

5066 DATA 197517051915180519650
5067 DATA 1965-251314129+197 51

5071 DATA 1975176519850

5072 DATA 19651835-35191519620

5073 DATA 1965160919051895180,19450
5074 DATA 19651755 -24191 9159919650
G075 DATA 197+1867149519750

3076 DATA 1979170514951%97 40

3077 DATA 1965~2513141295197 41

5083 DATA 1955176518850

5084 DATA 128,188,143,129,1

5093 DATA 141,-3,1405172,50

3094 DATA 19651

5102 DATA 196:-4519141

5114 DATA 19691755191 5176515%, 1895144519451
5124 DATA 1945138518951705181y177+191,129,195,1
G131 DATA 1974176519850

35132 DATA 196+183519151871%1519691
5151 DATA 1989176519750

3152 DATA 196v191518351915187,19691

LISTING 9-8 Complete programming for Project 9-8

FIGURE 9-8 Additional limited-segment frames for making the robot
figure look left and right and blink its eyes

The new lines in the drawing-subroutines section are 1130, 1140, and
1150; in the string-packing subroutine are new lines 4130, 4131, 4140,
4150,and 4151. New DATA lines are from 5131 through 5152. The control
routine is entirely new; it must be entered from scratch.

Here is the outline for the final robot scenario:

1. Draw full Frame 1 (line 115).

2. Do the curb sequence between one and four times.
A. Do along, random time delay (line 125).
B. Look to the left side of the screen (line 130).



Q=1 U

9.
10.
11.
12.
13.
14.
15.
16.

AFirst Look at TRS-80 Animation 143

Do a long, random time delay (line 135).
Change from left to looking right (line 140).
Do a long, random time delay (line 145).
Look straight ahead (line 150).

Do a long, random time delay (line 155).

. Blink eyes while looking forward (line 160).

TQEEDO

. Walk forward about 20 paces (lines 170-180).

Do a short, fixed time delay (line 185).

. Turn 90 degrees to face left side (line 190).

Do a short, fixed time delay (line 195).

. Raise arm (line 200).

Do arm-raised sequence between one and four times.
A. Arm up, eyes open (line 210).

B. Do medium, random time delay (line 215).

C. Blink with arm raised {line 220).

D. Do medium, random time delay (line 225).

Lower the arm (235).

Do a short, fixed time delay (line 240).

Turn another 90 degrees to face backward (line 245).
Do a short, fixed time delay (line 250).

Take about 20 paces to the rear (lines 255-265).

Do a short, fixed time delay (line 270).

Turn 180 degrees to face forward again (lines 275 and 280).
Repeat the scenario from the beginning (line 285).

Tinker with the time delays and FOR ... TO ... NEXT statements
to create some interesting and unusual effects of your own. Try extending
the scenario as far as your understanding of the animation techniques will

allow.

PROJECT 9-9

Use the string-packed frames available in Listing 9-8 to compose an
entirely different scenario—for instance, getting the robot to dance a
jig. See if you can add a couple of new frames to create a goose-
stepping robot.






Complex-Figure e

ANIMATION g

The robot figure featured in the previous chapter was a fairly simple one;
what’s more, the projects demonstrated some fairly simple animation
routines. This chapter expands the notion of creating animated figures
from packed-string variables, pushing matters about as far as they can go.

The topic of complex-figure animation includes the techniques for
generating a complex series of animation sequences for a single figure and
working out independent animation sequences for two or more figures. In
both instances, the speed of execution of BASIC programs is a most
powerful factor in determining how the sequences are designed and run.
BASIC, being an interpretive language, is bound to run much slower than
a corresponding program written in a machine language. Here we begin
running into the speed limits of TRS-80 BASIC. There are, however,
some techniques for generating satisfactory complex animation se-
quences from BASIC, and they are, of course, offered here for your con-
sideration.

These discussions use the string-packing format that has been built

145



146 CHAPTER 10

up through the last few chapters. There will be nothing new as far as the
program formatting is concerned; there will be the familiar initialization
and control routines, string-packing subroutines, and drawing subrou-
tines. We will even stay with the same line-numbering format for the pro-
gram. The only new ideas concern the implementation of those familiar
features.

ANIMATING LARGE, COMPLEX FIGURES

The larger a figure becomes, the more lines it covers and the more
characters there are in each line. Also the larger the number of lines, and
the larger the number of characters in each line, the longer it takes to draw
the figure. Limited-segment framing, a technique introduced in the
previous chapter, attempts to create smooth animation effects by draw-
ing the moving parts of a figure in a piecemeal fashion: move a little bit of
the figure here, move another little bit over there, and so on. If things are
properly coordinated, limited-segment framing can produce some nice
animation effects, even on large and complex figures.

In this chapter, limited-segment framing is refined to a higher degree
by taking advantage of the TRS-80’s ASCII control codes, codes that can
be treated as CHR$ or STRINGS$ characters but that control the position
of the cursor rather than printing something on the screen.

taking advantage of contro! codes

Three TRS-80 control codes are especially useful for high-
performance, limited-segment framing. They are:

24  Backspace the cursor one character space.
25 Advance the cursor one character space.
26 Drop the cursor down one line.

PRINTing a CHR$(24), for instance, moves the cursor (the next
printable character space) one space backward, and it does not delete the
character residing there. PRINTing a CHR$(8) will backspace and erase,
but CHR$(24) does not. Whenever you have a need to backspace a number
of locations in succession, PRINTing a CHR$(n,24) will do the job, where
n is the number of spaces.

Doing a PRINT CHRS$(25) advances the cursor, again without
disturbing any character that might reside in that new cursor location.



WOUINHRICAST IQUIT ARTHHTAUUTE 151

That code works with the STRINGS function to let you advance the cur-
sor some desired number of character locations.

Finally, CHR$(26) drops the cursor down one line from its present
position.

These control codes can be concatenated into packed strings just as
any of the graphics codes can be packed. Thus a single string variable can
both print characters and control the position of the cursor. The notion is
relevant to our present topic because it allows for faster adjustment of
small, moving segments of an animated figure.

Suppose, for example, you want to redraw the last eight characters
in a twelve-character line of graphics. Rather than your redrawing the
first four characters, the string variable can start out with a
STRINGS$(4,25) function, followed by the eight graphic codes that are
necessary for making the change. Certainly it takes some time for BASIC
to execute that STRING$(4,25) function, but it runs faster than a PRINT
@ D+8 operation. (The latter idea adjusts the displacement value for
printing the portion of the line that is to be redrawn.)

For a specific example, look ahead at program line 5110 in Listing
10-1. The DATA line begins with the sequence — 5,25. When it is packed,
those two figures are interpreted as a STRING$(5,25) function—skipping
the first five character spaces in the line.

Using the control codes really begins paying off in situations where a
limited-segment framing situation calls for redrawing several characters
over two or more lines in succession. Maybe an animation sequence re-
quires redrawing the characters in a 4 X 2 segment of a complex figure.
That’s two successive lines of four characters apiece. A single string
variable can handle the job by first printing the four characters for the
first line, doing a CHR$(26), doing a STRING$(4,24), and then printing
the four characters for the next line. CHR$(26)+STRING$(4,24) drops
the cursor down one line and then moves it back four character locations,
back to the beginning of the second line to be redrawn. Packing this line-
control sequence into a single string variable makes things run a lot faster
than is possible when you are specifying different PRINT @ locations for
the two lines.

Lines 5441 through 5444 in Listing 10-1 use all of these control
techniques. All of those data are packed into a single string variable. Line
5441 begins by skipping nine character locations, then it prints some stan-
dard graphics, and it ends by dropping down one line and running
backward nine character locations. The data in line 5442 is concatenated
into that same string, and it also concludes by dropping down a line and
skipping back nine spaces to the beginning of the next line. That par-
ticular string is completely packed only when the end of line 5444 is
reached. The resulting string offsets the start of the drawing by eight
character spaces, then fills in a selected area that measures 9 x 4.



an example: COUNTRY GAL

Fig. 10-1 is a moderately large, complex figure. It is certainly larger
and more complex than the robot figure offered in the previous chapter.
What is equally important, however, is the need to generate a highly com-
plex series of animation sequences that will make the COUNTRY GAL'
sing, roll her eyes, tap her foot, slap her knee, and dance a little jig.

The notion of drawing a complete 17 x 10 frame for every little ele-
ment of animation is an unworkable one. The drawing time for a frame
that large is simply too long to achieve a satisfactory result. Specifically,
there would be too much flicker; the drawing operation would be obvious
each time the frame is altered. The job must be done via the careful selec-
tion and coordination of limited-segment framing.

Figs. 10-2 through 10-5 show a number of limited segments. Each,
standing alone, makes little sense. They are simply bits and pieces of the
overall animation. Figure 10-2A, for instance, shows five different con-
figurations for the gal’s mouth, Fig. 10-2B shows four different eye posi-
tions, and Fig. 10-2C shows two positions for her foot closest to the left
side of the frame. In all of those cases, the figures represent just a part of a
single line on the screen: the braids in Line 2 of the main drawing are miss-

s e

)}

FIGURE 10-1 Worksheet version of
Frame 1 for Country
Gal




T . : 5
S (1 S(2, (3
3 Kl ]
n a A1nin i
D - » R Q% A
T »
Sedl W0
. f 4 g
s Stg
2 |
[ERR
S <
) B ; {
i :

FIGURE 10-2 Single-line segments for Country Gal animation: (A)
mouths; (B) eyes; (C) left-side foot

ing in the segments of the mouth, parts of the girl’s hat are missing from
the eye segments in Fig. 10-2B, and the right-side foot is missing from the
two segments in Fig. 10-2C.

Fig. 10-3 shows leg segments from Lines 7 through 10, Fig. 10-4
shows arm segments for Lines 4 and 5, and Fig. 10-5 shows braid
segments for Line 3. All of them are partial lines—segments of the
figure—that are to be drawn at the appropriate time in a complex anima-
tion sequence.

All of these segments, as well as the main figure in Fig. 10-1, are
brought together in Listing 10-1. That program includes the DATA
listings, string-packing subroutine, and drawing routines. The idea is to
get the information for these animation segments into the computer and
packed into strings so that they can be drawn in a coordinated fashion
from a control routine.

The main COUNTRY GAL figure, Fig. 10-1, is represented by the
DATA items in program lines 5011 through 5020. You will find nothing
new there, but you can check your understanding of earlier principles by
comparing what you see in Fig. 10-1 with the DATA in those lines.

149



& g
c .
1 i ‘
S ,
7 2
I
I‘ H
o fo 11
1 =2 1 ‘ - ;,)
: i

FIGURE 10-3 Leg segments for Country Gal animation

The DATA for the mouth segments in Fig. 10-2A occupy program
lines 5110 through 5150. Notice that each of those lines begins with a
—-5,2b sequence, a sequence that will pack into a string as
STRINGS$(5,25). That means the mouth segments are drawn from the
sixth character space; it means the mouth-drawing operations skip over
the girl’s left-side braid that also occupies Line 3 of the main drawing.

The eye segments from Fig. 10-2B fill out DATA lines 5210 through
5240. They, too, call for skipping over any characters to the left of the
upper-face portion of the drawing, namely the left-hand side of the girl’s
hat.

The foot segments are handled in the same way by DATA in pro-
gram lines 5310 and 5320.



g : 5
‘o N A
> ¥ + E
4 ;,,[.J,} 1 L
# Iz
.. r .
i~ : ;
5,2 5(5,5)
= (=3
.
5(5,3 85,6}

FIGURE 10-4 Arm segments for Country Gal

FIGURE 10-5 Braid segments for Country Gal

All of the DATA lines for the mouth, eye, and foot segments are
packed into separate string variables. The fact that each of those lines
ends with a 1 character signifies that fact. That is not the case, however,
for the more complex leg parts.

Looking at Fig. 10-3, you can see that there are six leg segments:
three for the left-side leg and three for the right-side leg. Unlike the
segments described thus far, these occupy more than one line in the figure;
they occupy four lines to be exact.

The first leg segment, labeled S(4,1), is packed from DATA in lines

151



152 CHAPTER 10

5411 through 5414. Although there are four CRT lines in the drawing and
four corresponding DATA listings, all of those data are packed as a single
string variable. Note the sequence 26,— 8,24 at the ends of the first three
DATA lines. That combination of data items, as described earlier, effec-
tively starts the next line of graphics. In each case, the 26 is packed into
the string of CHR$(26), and that drops the cursor down one line from its
present position. Then the —8,24 combination is packed as
STRING$(8,24), and that function, when included in the string, moves the
cursor to the beginning of the next line. Thus, the entire leg segment is
packed into a single string variable, even though it includes four different
lines of characters. It runs about as fast as any string-packed series of
operations can run.

The same general idea is applied to the five remaining leg segments
in Fig. 10-3. The right-side leg segments, however, are printed only after
skipping over the left-leg portion of the picture. Note, for instance, pro-
gram lines 5441 through 5444. The data in those lines are packed as the
leg segment labeled S(4,4). Line 5441 shows a — 8,25 combination at the
beginning, and that is packed as STRING$(8,25); skip over eight charac-
ter spaces before beginning the drawing. Then the first three of those
DATA lines conclude with a —9,24—STRING#$(9,24). That function, in
combination with the preceding 26 code, is responsible for setting the cur-
sor to the beginning of the next line in the segment.

The arm segments in Fig. 10-4 are packed in a similar way, using
DATA lines 5511 through 5562. See if you can relate the codes 24, 25, and
26 to the drawings.

As a final test of your understanding of this technique, try your hand
at associating DATA lines 5610 through 5640 with the braid segments
shown in Fig. 10-5.

As mentioned earlier, these high-performance BASIC animation pro-
grams can have the same general format as the earlier ones. This one is
lacking a control routine at the moment, but everything else is there.

The main figure, Fig. 10-1, is packed at lines 4015 and 4020, using
DATA items from program lines 5011-5020. It is drawn by calling the
drawing subroutine at line 1015 (or 1000, or 1010).

PROJECT 10-1

Load the program in Listing 10-1 into your system, then RUN it. It in-
cludes a checksum routine that is intended to test the accuracy of the
DATA listing section. If you have made no errors in that rather exten-
sive DATA listing, you will see an OK printed on the screen. Otherwise,
a DATA ERROR message will appear. In the latter case, you will have
to double-check the DATA lines and correct any typographical errors
you have made.



10 REM XX PROJECT 10-1

15 REM COUNTRY GAL DATH
20 CLEAR 1024 1DEFSTR F»5

25 DIM F(1210)s8(626)

100 REM %x CHECKSUM ROUTINE

105 T=0

110 REALD A

115 ON ERROR GOTO 125

120 T=T+A3160T0 110

125 IF T«:37166 THEN PRINT "IATA ERROR" (END
130 PRINT "OK" 1END

1000 REM X¥ ORAWING SUBROUTINES

1220 PRINT D+645,5( 25205 LRETURN
1230 PRINT D+64,8( 293 )5 IRETURN
1240 PRINT DHb455( 25405 IRETURN
1300 REM [RAW SEGMENTS 3

1310 PRINT @ D457695( 35105 tRETURN
1320 PRINT @ D+37655¢ 3205 IRETURN

1400 REM ORAW BEGMENTS 4

1010 REM LRAW FRAME 1
1015 FOR L=1 TO 10IPRINT @ D464K(L-1)»F(1sL )5 INEXT LIRETURN
1100 REM DRAW SEGMENTS 1
1110 PRINT @ D+128,8(1,1)5 tRETURN
1120 PRINT @ D+H128,5(1,2)3 IRETURN
1130 PRINT @ D+128,8(1,3)5 IRETURN
1140 PRINT 8 DH128y5(154)5 IRETURN
1150 PRINT @ D+128+8(1y5)5 IRETURN
1200 REM [IRAW SEGMENTS 2
1210 PRINT @ D+64s5( 251 )5 IRETURN

@

@

@

1410 PRINT D4+384,5( 451 )5 IRETURN
1420 PRINT D+3845( 4,208 IRETURN
1430 PRINT D+384,8( 4,3 )35 IRETURN
1440 PRINT D438455( 454 05 tRETURN
1450 PRINT D+384,8(4,5)5 SRETURN
1460 PRINT D+384+5( 4,605 SRETURN
1500 REM DRAW SEGMENTS 5

e

@

@

@

e

e

1510 PRINT @ D+1925S(5,1)5 IRETURN

1520 PRINT @ D+19258(552)5 IRETURN

1530 FRINT @ D+192,5(5,3)3 tRETURN

1540 PRINT @ D+192s5(5s4 )35 tRETURN

1550 PRINT @ D+192,8(555)5 IRETURN

1560 FRINT € D+19258(556)5 LRETURN
@
@
@
@

1600 REM DRAW SEGMENTS 6
1610 PRINT 04128y5( 651 )5 SRETURN
1620 PRINT D+128,8( 652)5 SRETURN

1630 FPRINT D+128+8( 653 )5 IRETURN
1640 PRINT D4128,8( 614 )5 IRETURN
4000 REM %% STRING-PACKING SUBROUTINE

4010 REM FACK FRAME 1

4015 L=1

4020 GOSUB 49001F(1,L)=FIIF A=0 THEN L=L+1:60T0 402¢
4100 REM PACK SEGMENTS 1

4110 FOR N=1 TO SIGOSUR 49001S(1sN)I=FINEXT N
4200 REM PACK SEGMENTS 2

4210 FOR N=1 TO 41GOSUR 4700:8(2,N)=FINEXT N
4300 REM FACK SEGMENTS 3

4310 FOR N=1 T0 2IiGOSUB 490015(3:N)I=FINEXT N
44900 REM FACK SEGHMENTS 4

4410 FOR N=1 T0 41GOSUR 49001504, N)=FINEXT N
4500 REM FACK SEGMENTS O

4510 FOR N=1 TO &4:GOSUB 4200 :8(3SyNI=FINEXT N

{cont)

153



4600
4610
4895
4900
4905
4910
4915
5000
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5100
5110
5120
51390
5140
5150
5200
5210
5220
5230
5240
5300
5310
5320
5400
5411
5412
5413
5414
5421
5422
5423
5424
5431
5432
5433
5434
5441
5442
5443
5444
5451
5452
5453
5454
5441
5462
5443
5444
5500
5511
5512

REM

PACK SEGMENTS 6

FOR N=1 T0O 4:1GOSUR 4200:8(&6sNI=FINEXT N
RETURN

LR
READ

ALIF A=0 OR A=1 THEN RETURN

IF A0 THEN F=F+CHR$(AIIGOATO 4905

REAT

BIF=F+STRING$(ABS( A)»R)IIGOTO 49035

REM X% DATA LISTINGS

REM

DATA
DATA
LATA
DATA
DATA
naTA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
REM

LATA
IATA
DATA
LATA
REM

DATA
DATA
REM

DATA
DATA
LATA
LATA
IATA
DATA
LATA
DATA
DATA
DATA
DATA
DATA
DATA
IATA
[ATA
LATA
DATA
DATA
DATA
DaTA
DATA
[ATA
DATA
DATA
REM

DATA
DATA

FULL FRAME-1 DATA

2025136215335197 90
1945136925140, 188,1585175:1599 173190+ ~25 140, 132,19550
194513691769 13441304175,1839187 9152129137 9176913250
1969184 ¢106+14051588,17351405172,180+197+0
19551309 1435164218651295130,18151821455129,19890
197+1844+133,194,138,1805198+90
195916091909 177 ¢ -4 176917851895 144219650
19751862191+1499170,191+1815198+0
19731709 1595129:13051755149519840
195y~291405135+139+ 19421355 139y-2+140519651

SEGMENTS 1 DATA
-Ge25¢1305175,183,5,1875159512951
—5s2551307175,-25191+159,12%951
~592591305178,~24179,159+12951
~5s2551302175,1875y1915135,1291
~Gr25s1305139:191,1835159512%9»1

SEGMENTS 2 DATA
~&69259158+s175,159,17351
~61255190,-2,191518951
-6920219051735191917351
~-6:255158,191,159,189+1

SEGMENTS 3 DATA
~By25y-29140y135513991
~35255-35131513%»1

SEGHENTS 4 DATA
195:16051905177 9251762265 -8524
19791862191 5149526+-8524
197317051595129+269-8+24
195y-251409135,139+,128y1
1959160919051 77 5291769269 -8+24
195+160,190,15951295128526,-8:24
1959139+19151809194,26+-8,24
1945-2y1319129+13051%491
1949160518451919141+17251765265-8124
19451315143518991445194:26>,-8:24
1945y-2+1765158+1732,1945265-8,24
20051
~By209~291761178+1891144,196+26+-7524
1705191518B15198+26» -9+ 24
130+91755149+198+269~9524
12851355139,-25140,196+1
~Bs209y~291765178,18991445196+261+-9+24
128y13091755189514491969269-9224
194,184,5191,135,1965269-9:24
19451299130+, -25131 51
~8925917691565142,191918B091445195+26+-9224
194+160919051435131 219592699924
19451885173y -2917 6919592697224
2011

SEGMENTS S DATA
19691849 1565140+265~7 224
195913021435164:18691

154



5521 DATA 1955160518451565140,5265-7+24

5

522 DATA 194+174,1835129,128,186+1

5531 DATA 1935:160918451565140452891-7424

5332 DATA 160,184,1585135,1295128,18691

5541 DATA -9+25,1405172518051975249-8+24
T542 DATA 181+152+1435129,19691

5551 DATA -9+92551405172,18051449196:269-8924
5552 DATA 1811285130187 +157,19551

5561 DATA ~F923:140,1725180,144,196+269-8524
5562 DATA 181,1285130+51395173,1805144,128,1
5600 REM SEGMENTS & [ATA

5610 DATA 1945136917651 3451

5620 TATA 128+13751769134513151

5630 DATA -11,25:13751765132519591

5640 DATA —-11,25,131+137+1405134,194,51

LISTING 10-1 Checksum routine, drawing subroutines, string-packing
subroutine, and DATA listings for Country Gal Frame 1 and
all animation segments; refer to Project 10-1

PROJECT 10-2

1¢

15

20

25

30

35

100
110
115
120
125
139
135
140
145
150
183
160
165
170
175
180
185
190
200
205

950

Once you get an OK message in response to running Listing 10-1, add
to it the control routine in Listing 10-2.

REM XX PROJECT 10-2
REM SINGING AND DANCING COUNTRY GaAL
CLEAR 1024:{DEFSTR Fs5
DIM F(1:10)58(646)
CLSIFRINT @ 408,"SINGIN‘ & DANCIN' "iSTRING$(49,32)3"COUNTRY GAL"
GOSUE 4000
REM %% CONTROL ROUTINE
D=1531CLEIGOSUE 1010
FOR Ri=1 TO RND{100)
T=23IN=RNIK 9)
ON N GOSUER 111051120511305114051150,1210,1220,1230,1240
GOSUE 1310:G0SUB 950:C0SUR 1320:1GOSUE 950
NEXT R1
FOR R2=1 TO RNIM S0)
T=2IN=RNI( 9)
ON N GOSUB 1110,1120511305114051150,12105122051230,1240
FOR M=1 T0 11
ON M GOSUB 1410,151051420515205143051530,950,1520514205151051410
NEXT MsR2
GOSUB 1210:G0SUE 15203GOSUB 1550
FOR R3=1 TO RNIK 50)
GOSUB 1420 GOSUR 15603G0SUB 1640:G0OSUE 16301G0SUR 1550 1C08UK 1410
GOSUB 1430:COSUB 1830:GOSUR 1620:GOSUB 1610 :GOSUR 15203GOSUR 1440
NEXT R3
GOSUB 1510:GOSUR 1540
GOTO 115
FOR TB=0 TO TINEXT TISRETURN

LISTING 10-2 Initialization and control routines to be added to Listing
10-1; see Project 10-2

155



156 CHAPTER 10

Tables 10-1 through 10-4 completely summarize the string-variable
names and program lines devoted to the picture segments. Every picture
segment shown in Figs. 10-2 through 10-5 has a two-dimensional string
array, S, assigned to it. Those are all listed on the tables along with the
subroutine number that should be called for drawing them, their string-
packing line numbers, and their DATA line numbers.

RUN the program to see what it does. If all is going well, the COUN-
TRY GAL should sing for a little bit, tapping her foot with the “beat.”
Then she gets a bit carried away, stomping her left-side foot and slapping
her waist with one hand. After that, things really get going, and she
dances a little jig, with arms, legs, and braids flying about.

TABLE 10-1

STRING VARIABLE ASSIGNMENTS AND PROGRAM LINE
NUMBERS FOR THE COUNTRY GAL MOUTH, EYES, AND
LEFT-SIDE FOOT (see Fig. 10~-2)

Segment Draw Pack DATA
S(1,1) 1110 4110 5110
8(1,2) 1120 4110 5120
S(1,3) 1130 4110 5130
$(1,4) 1140 4110 5140
$(1,5) 1150 4110 5150
$(2,1) 1210 4210 5210
$(2,2) 1220 4210 5220
$(2,3) 1230 4210 5230
S(2,4) 1240 4210 5240
8(3,1) 1310 4310 5310
$(3,2) 1320 4310 5320

TABLE 10-2

STRING VARIABLE ASSIGNMENTS
AND PROGRAM LINE NUMBERS
FOR THE COUNTRY GAL LEG SEGMENTS (see Fig. 10-3)

Segment Draw Pack DATA
S(4,1) 1410 4410 5411 5412 5413 5414
S(4,2) 1420 4410 5421 5422 5423 5424
S(4,3) 1430 4410 5431 5432 5433 5434
S(4,4) 1440 4410 5441 5442 5443 5444
S(4,5) 1450 4410 5451 5452 5453 5454

S(4,6) 1460 4410 5461 5462 5463 5464




TABLE 10-3

STRING VARIABLE ASSIGNMENTS AND PROGRAM LINE NUMBERS
FOR THE COUNTRY GAL ARM SEGMENTS (see Fig. 10-4)

Segment Draw Pack DATA

S(5,1) 1510 4510 5511 5512
5(5,2) 1520 4510 5521 5522
S(5,3) 1530 4510 5531 5532
S(5,4) 1540 4510 5541 5542
S(5,5) 1550 4510 5551 5552
S(5,6) 1560 4510 5561 5562

TABLE 10-4

STRING VARIABLE ASSIGNMENTS AND PROGRAM LINE NUMBERS
FOR THE COUNTRY GAL BRAID SEGMENTS (see Fig. 10-5)

Segment Draw Pack DATA
S(6,1) 1610 4610 5610
$(6,2) 1620 4610 5620
$(6,3) 1630 4610 5630
S(6,4) 1640 4610 5640

That isn’t all she can do, of course. There is a lot of flexibility in-
herent in this limited-segment animation scheme. There are hundreds of
permutations available, and it’s all done with the control routine.

Given the information in the preceding figures and tables, see if you
can see the function of program lines 120 through 130. What does line 160
do? Lines 180 and 185? They call segment-drawing subroutines in some
cases and execute sequences of limited-segment drawings in others.

Once all the segments have been defined as in Listing 10-1, it is up to
your imagination and skill with BASIC programming to assemble some
sort of desired animation sequence. Play with the programming of the con-
trol routine for a while. The poor little gal can be made to do some
ridiculous things, and there is no end to the possible performances.

Work on some sequences of your own; you’ll learn a lot more from
your own successes and failures than you can from a dozen additional
pages I might write for you.

The program is expandable, and you can add some animation
segments of your own. Why not work out some static images that serve as
a backdrop or stage for COUNTRY GAL? There is no need for me to
show you how.

157



SYNCHRONOUS ANIMATION OF TWO
OR MORE FIGURES

In principle, animating two or more figures is no different from animating
selected segments of a large, complex figure. There is no difference be-
tween the thinking involved in animating a single figure that has six mov-
ing parts and animating six independent figures that each have one mov-
ing part.

Once the basic figures and their respective limited-segment parts are
defined and translated into BASIC programs, all that remainsis to writea
centrol routine that coordinates the animation of all the figures and their
moving segments. The fact that the drawing subroutines apply to several
different figures is irrelevant.

The matter of animating more than one independent figure forces a
certain problem into the limelight. A microprocessor system, namely your
TRS-80 home computer, is capable of carrying out just one task at a time.
Everything must be done in a certain sequence, one step at a time.
Sometimes one gets the impression that two or more figures are moved
simultaneously, but that is an illusion; those things are simply happening
in an extremely fast sequence.

Because everything has to take place one step at a time, control
routines must move a segment for one figure, then move a segment for
another figure, and so on. A faster-acting figure must be addressed more
often than a slower-moving one. Ideally, any attention given one figure
should not have any appreciable effect on the animation effect of another.
That isn’t always easy.

Achieving the illusion of simultaneous animation of two or more
figures is a topic that occupies the remainder of this chapter. Let’s begin
with a specific example.

PROJECT 10-3

Type Listing 103 into your system, then do a RUN. If you have copied
the DATA listing properly, you will get an OK message. Otherwise you
will get a DATA ERROR message and you must double-check the
DATA listings and make the necessary corrections.

10 REM *% FROJECT 10-3

15 REM DOG AND CAT DATA
20 CLEAR S12I1DEFSTR F»9

25 CLSIFRINT @ 410,"D0C AND CAT"
100 REM x% CHECKSUM ROUTINE

115 T7=0

120 READ A

125 ON ERROR GOTO 135

130 T=T+Al1G0TO 120



Complex-Figure Animation 159

138 IF T«»12567 THEN FRINT "DATA ERROR" IEND
140 FRINT "DATA OK"IEND

1000 REM %X DRAWING SUBROUTINES

1100 REM G -—~ FRAME 1

1101 FOR L=1 TO 3IPRINT @ DLI+64%CL-1)yFOLsL )8 INEXT LIRETURN
1109 REM [OG SEGMENTS

1110 PRINT B 0O1+64,5(1,1)5 tRETURN

1120 PRINT @ D14+64,5(1,2)5 IRETURN

1130 PRINT @ 01,8(1,3)5 IRETURN

1140 FRINT @ D1+8(1y4)5 IRETURN

1150 PRINT @ D1s8(1,5)5 tRETURN

1160 PRINT @ D1s8(1,6)5 tRETURN

1170 PRINT @ Ds5(1,6)5 tRETURN

1200 REM CAT —~~ FRAME 2

1201 FOR L=1 TO 4!FRINT @ D2+64%CL-1)»FU2,L05 INEXT LIRETURN
1209 REM CAT SEGMENTS

1210 PRINT @ D24+128,8(2y1)5 IRETURN

1220 FRINT @ D24128,5(2,2)5 IRETURN

1230 PRINT @ D2+128y8(2y3)5 IRETURN

1240 PRINT @ D2+128,8(254 )5 tRETURN

1250 FRINT @ [2,8(2,5)5 tRETURN

1260 PRINT @ D2:8(2,6)5 IRETURN

1270 PRINT @ D2+192,8(2,7 )5 IRETURN

1280 FRINT @ D2+192,8(2,8)5 IRETURN

1290 PRINT @ D2+4192+8(259)5 IRETURN

£000 REM %X STRING-PACKING SUBROUTINE

4100 REM D06 —-- FRAME 1

4102 L=1

4103 GOSUB 4900:F(1yL)=FIIF A=0 THEN L=L+11060T0 4103
4109 REM [0G SEGHENTS

4110 FOR N=1 TO S:{GOSUR 49001801, M)=FINEXT N

4200 REM CAT -— FRAME 2

4202 L=}

4203 GOSUB 49003F(2,L)=FIIF A=0 THEN L=L+11GOTO 4203
4209 REM CAT SEGMENTS

4210 FOR N=1 TO Z:GOSUEB 4900:18(2,N)=FINEXT N
4895 RETURN

4900 F=""

4905 READ A1IF A=0 OR A=1 THEN RETURN

4910 IF AX0 THEN F=F+CHR$(A)ICOTO 4905

4915 READ RIF=F+STRINGS$CABRS(A)BIIGOTO 4903
5000 REM ¥% DATA LISBTINGS

5100 REM 006G ~— FRAME 1

5101 DATA 149519991845191s1725~25176714450
5102 DATA -8y191,133y-45143y12850

5103 DATA 19151765197519151765197 91

5109 REM DOG SEGMENTS

5110 DATA ~9528y-45143,12851

5120 DATA ~9s255143:1915-2+,179512851

5130 DATA -10,25517251

5140 DATA -10,25,18851

5150 DATA 149,128.1

5160 DATA 1352,129s1

5200 REM CAT -~ FRAME 2

5201 DATA 207»0

5202 DATA 128,1765184517652002,1915131,129+0
5203 DATA 13051435142,1755189,188y~7,191519450
5204 DATA 195,160,191,12971975187»1515197 51
5209 REM CAT SEGMENTS

5210 DATA 255143,1

{cont.)



5220 DATA 25513151

5230 DATA -2,25,142-1

5240 LATA -2525,14351

5251 DATA ~115255196+269-4524
5252 DATA 128,1915131+12951

G261 DATA ~11525,-2,188y265~-2:24
5262 DATA -2+191-19451

5270 DATA 1955160s1

5280 DATA 128:1405135516351

5290 DATA 1305-2+131+163»1

LISTING 10-3 Checksum routine, drawing subroutines, string-packing
subroutine, and DATA listings for the dog and cat anima-
tion; refer to Project 10-3

Save the program on tape or disk; you will need it again later in this
section.

The program deals with the two figures shown in Fig. 10-6. The cat
and dog are shown in their standard positions. The dog figure, FRAME 1,
is packed into string variables F(1,1) through F(1,3) by program lines 4102
and 4103, and it uses DATA from lines 5101 through 5103. That dog
frame is drawn by calling the drawing subroutine at program line 1101.

The main cat figure, FRAME 2, is packed into string variables F(2,1)
through F(2,4). See the packing instructions in lines 4202 and 4203, and
the DATA in lines 5201 through 5204.

The programming equips the dog figure with three moving
segments: tail, eye, and mouth. The cat has four moving segments: tail,
eye, mouth, and forepaw. Thus the dog can wag its tail, blink its eye, and
bark; the cat can blink, puff up its tail, open its mouth, and strike out at
the dog with a forepaw. Those individual segments aren’t shown on the
drawing, but Table 10-5 can help you identify their fairly simple con-
figurations.

FIGURE 10-6 Worksheet drawings for independent dog and cat figures



TABLE 10-5
SEGMENT FUNCTIONS, VARIABLE ASSIGNMENTS, AND PROGRAM
LINE NUMBERS FOR THE DOG AND CAT FIGURES

Function Variable Draw Pack DATA
Close dog’s mouth S(1,1) 1110 4110 5110
Open dog’s mouth §(1,2) 1120 4110 5120
Open dog’s eye 5(1,3) 1130 4110 5130
Close dog's eye S(1,4) 1140 4110 5140
Straighten dog’s tail S(1,5) 1150 4110 5150
Bend dog’s tail S(1,6) 1160 4110 5160
Close cat’s mouth S(2,1) 1210 4210 5210
Open cat’s mouth S(2,2) 1220 4210 5220
Open cat’s eye S(2,3) 1230 4210 5230
Close cat’s eye 5(2,4) 1240 4210 5240
Bend cat’s tail S$(2,5) 1250 4210 5250
Puff up cat’s tail S(2,6) 1260 4210 5260
Lower cat’s paw S(2,7) 1270 4210 5270
Medium raise cat’s paw S(2,8) 1280 4210 5280
High raise cat’s paw 5(2,9) 1290 4210 5290

According to the table, getting the dog to blink an eye is a matter of
calling subroutines 1140 and 1130 in succession. The former subroutine
closes the dog’s eye, and the latter opens it again. If you want to raise the
cat’s paw, call subroutines 1280 and 1290. To lower it, call 1280 and 1270
in that order.

Remember that the main topic under discussion here is creating the
illusion of simultaneous animation of two (or more) independent figures.
Try Project 10-4.

If the program is properly loaded, you should see the dog figure wag-
ging its tail and blinking its eye. The cat is simply standing there blinking
its eye. You should have the impression that the two figures are being
animated independently —there is no apparent correspondence between
the position of the dog’s tail and the blinking of the two creatures’ eyes.
There is, however, an underlying synchronization of the activity; the use
of random functions tends to cover it up.

PROJECT 10-4

Rewrite the initialization and control routines from Listing 10-3 to
make them conform to this version. Actually, the instructions in Listing
10-4 are added to the drawing subroutines, string-packing subroutine,
and DATA listings of the previous program.

161



10 REM k¥ PROJECT 10-4

15 REM DOG ANL CAT -- SEQUENCE 1
20 CLEAR S12IDEFS5TR FsS

25 CLSIFRINT @ 410,"D0OG AND CAT"
30 GOSUE 4000

100 REM %% CONTROL ROUTINE

105 D1=465102=421

110 CLSIGOSUR 11001GOSUR 1200
115 GOSUBR 1160

120 BD=RND( 10)IBC=RNIH{ 10)

125 IF BD«<3 THEN GOSUB 1140

130 T=1031GOSUB 9350 :GOSUER 1130
135 GOSUR 1150

140 IF BC<3 THEN GOSUER 1240

145 T=101GOSUR 950:GOSUR 1230
150 GOTO 115

950 FOR TD=0 TO TINEXT THIRETURN

LISTING 10-4 Initialization and control routines to be added to Listing

10-3 as described in Project 10-4

A line-by-line analysis of this control routine can be quite instructive

at this point.
Line 105:

Line 110:

Line 115:

Line 120:

Line 125:

Line 130:
Line 135:

Line 140:
Line 145:
Line 150:

Set the displacement values for the two figures. Here, D1
sets the displacement value, or screen position, for the
dog. Variable D2 is the displacement value for the cat
figure.

Clear the screen and draw the two figures in their stan-
dard positions, as they appear in Fig. 10-6.

Bend the dog’s tail. Doing that GOSUB 1160 bends the
tail inward, marking the first of a two-phase tail-wagging
sequence.

Pick a pair of random numbers that will determine
whether or not each creature will blink its eyes during the
current operating cycle. Variable BD applies to the dog,
and BC applies to the cat.

If the value of BD is less than three (out of a possible ten),
close the dog’s eye.

Do a short, fixed time delay, then open the dog’s eye.

Straighten the dog’s tail to complete the two-phase, tail-
wagging sequence.

If the value of BC is less than three, close the cat’s eye.
Do a short, fixed time delay, then open the cat’s eye.
Repeat the sequence from the beginning.

The underlying synchronization of the routine ought to be more ap-
parent now. Consider, for example, the two-phase sequence for making the



Complex-Figure Animation 163

dog wag its tail. Line 115 bends the tail forward and line 135 straightens it
out. Those two program lines are inevitably executed with every oper-
ating cycle. Now notice lines 125 and 130, two of the lines tucked in
between the tail-wagging sequence. If the dog is to blink its eye, that
blinking always takes place between the time the tail is bent and then
straightened out. The eye blinking for the dog is tightly synchronized to
its tail wagging. Were it not for the random function regarding whether or
not the eye should be blinked, you would see the synchronization more
clearly—every tail motion would be coupled with an eye blink—but the
program is written such that there is only a two-out-of-ten chance that the
dog will blink its eye during a given cycle, and that random feature covers
the synchronization rather nicely.

Furthermore, the cat blinks its eye only after the dog’s tail-wagging
cycle is over. Again, if it weren't for the random function regarding
whether or not the cat should blink its eye on a given cycle, you would see
the cat blink after each one of the dog’s tail-wagging cycles.

Thus, the use of random functions goes a long way toward hiding the
fact that the two figures and their individual segments are tightly syn-
chronized. Otherwise the whole animation would have an unsatisfactory
“mechanical’’ appearance.

Another important feature of this animation sequence is its timing.
The eyes must blink faster than the dog’s tail wags. Notice how that is
achieved without any apparent interrupting of the animation.

First see how the eyes for both the dog and cat are held closed for a
short, fixed interval. The dog’s eye, for instance, is closed by the last state-
ment in program line 125. Line 130 then does the short, eye-closed, delay
and then opens the dog’s eye by the last statement in that same line.

The blinking of the cat’s eye is carried out in exactly the same
fashion in program lines 140 and 145.

Thus the eye-blinking effect for both figures is timed by a prescribed
figure, variable T, but there is no apparent delay inserted for timing the
dog’s tail wagging—an effect that is supposed to run even more slowly
than the eye blinks.

The tail-wagging animation is timed in a more indirect way. The tail
is set to one position by the statement in line 115, then it is set to the
straight-up position later in the program at line 135. In between those two
instructions you will find the eye-blink delay (line 130), which is executed
whether the dog’s eye is blinking or not. There is thus a built-in delay be-
tween lines 115 and 135, a delay that is set not only by the value of T in
line 30, but by the execution time of the other BASIC statements in that
part of the program.

There is yet another delay from the time the dog’s tail is straight-
ened out and then bent again. That is the cumulated delays between pro-
gram line 135 and 115, a cycle that is made possible by the GOTO state-



164 CHAPTER 10

ment in line 150. It turns out that that delay interval is very much the
same as the one between lines 115 and 135. Since both delays are longer
than the eye-blinking delays, it figures that the dog’s tail wags more
slowly than the critters blink their eyes.

Where would you add more delays in order to slow down the tail wag-
ging without affecting the duration of the eye blinks? How would you
restructure the program so that the tail wagging could run faster without
affecting the eye blinks?

PROJECT 10-5

Reload Listing 10-3 from tape or disk, then add the program lines
shown in Listing 10-5.

10 REM %% FROJECT 10-%

15 REM [OG AND CAT -~ SEQUENCES 1 AND 2
20 CLEAR GL12IDEFSTR F»8

25 CLEIFRINT @ 4105"00G AND CAT"

30 GOSUR 4000

100 REM %% CONTROL ROUTINE

105 D1=465102=421

110 CLBIGOSUE 11003GOSUE 1200

115 FOR Ri=0 T0 RND({50)

120 GOSUR 1160

125 BO=RNIM 10 ){BC=RNO( 10)

130 IF BDCX THEN GOSUE 1140

135 T=10:GOSUR 930:1G0SUB 1130

140 GOSUR 1150

145 IF BC<3 THEN GOSUEB 1249

150 T=1031GOSUE 950 :GOSUR 1230

153 NEXT Ri

160 FOR R2=0 TO RNIK50)

163 MD=RNLC 10 )¢BC=RNDI(10)

170 IF MD<3 THEN GOSUR 1120:GOSUE 1140
175 IF RC<3 THEN GOSUE 1240

180 T=10:1GO8UR 950 :1G0OSUR 1230

185 T=25:1GOSUR 950 :GOSUR 1110:GOSUR 1130
190 NEXT R2

193 GOTO 115

950 FOR TD=0 TO TINEXT TDIRETURN

LISTING 10-5 Initialization and control routine to be added to Listing
10-3 as described in Project 10-5

The sequence from the previous project is included in this listing, but
now it runs only for arandom number of cycles as determined by the state-
ment in line 115. That first sequence now occupies lines 115 through 155.
The new, second sequence is found between lines 160 and 195.

That second sequence causes the dog to bark at the cat at random in-
tervals, closing its eye with every bark. The cat is nonplused, however.
The cat still stands there, blinking its eyes at random intervals while the



Complex-Figure Animation 10D

dog goes crazy. Here is a line-by-line analysis of the second animation se-
quence:

Line 165: Pick a pair of random numbers that will determine
whether or not the dog will bark and the cat will blink its
eyes during the current operating cycle. Variable MD ap-
plies to the dog’s bark, and BC applies to the cat’s blink.

Line 170: If the dog is supposed to bark {two chances out of ten),
open its mouth and close its eye.

Line 175: If the cat is supposed to blink its eye, close the cat’s eye.

Line 180: Do a short, fixed time delay, then open the cat’s eye to end
the blink cycle.

Line 185: Do a longer, fixed time delay, and then close the dog’s
mouth and open its eye to complete the barking cycle.

Line 190: Repeat the second segment.

The dog’s barking and the cat’s blinking are again synchronized
through this routine, but as in the first case, the element of randomness
eliminates the undesirable effect of ‘‘mechanical’’ behavior. Indeed, there
seems to be no observable correspondence between the barking and blink-
ing. ,

The timing of the barking sequence is quite different from the tail-
wagging sequence in the first part of the program. When and if the dog’s
mouth is opened in line 170, there are two well-defined delays that always
take place until the mouth is closed again. See those delays at the begin-
ning of lines 180 and 185. The delay in line 180 is used directly to time the
cat’s eye-blinking operation, and the delay in line 185 adds more time for
the dog’s mouth to be open.

In this particular instance, tinkering with the time delay in line 185
can affect the barking effect without having the least effect on the cat’s
blinking. It is a more straightforward timing situation than the one re-
quired for the tail-wagging in the first sequence.

The synchronization of the events is masked by the random elements
of the routine, but it is nevertheless an integral part of the scheme. Notice,
for example, that the cat can blink its eyes only during the time the dog
has an opportunity to open its mouth. The fact that the dog’s mouth
might or might not be open at the moment covers the synchronism of the
matter.

The clever application of time delays, the arrangement of limited-
segment framing and, above all, the use of random elements of behavior
go a long way toward creating satisfying animations of two or more
figures on the screen. But, alas, there are animation situations where
covering up an underlying synchronism of the activity is very difficult or



166 CHAPTER 10

virtually impossible. Those situations call for doing away with the syn-
chronized programming and running the two or more figures as entirely
independent elements. That is asynchronous programming—the topic of
the next section.

ASYNCHRONOUS ANIMATION
OF TWO OR MORE FIGURES

A computer can execute only one instruction at a time, so it is technically
impossible to animate two or more figures simultaneously. A computer
can run instructions quite quickly, however, so it is possible to create the
illusion of animating figures simultaneously. In the previous section,
animation control was switched back and forth between two different
figures; a few simple steps were performed on one figure, then a few on the
other. The programs were written so that the switching activity was syn-
chronized, or bound into a tight sequential pattern. The fact that the
figures were following a sequential, synchronous pattern was rather
nicely covered by the use of some random selection of animation effects.

Not all multiple-figure animation sequences can be synchronized
that way, though. There are situations where it is very difficult and, in-
deed, impossible to apply that technique effectively. A case in point is one
where the animation sequence for one of the figures requires a relatively
long time delay that must be executed while other figures are still per-
forming. Generally speaking, the problem is one of controlling each figure
independently. It is a matter of simulating the effect of running more than
one animation program with an equal number of independent micro-
processors. The technique is sometimes called asynchronous multiplex-
ing; in the context of this book, we will call it asynchronous anima-
tion—totally independent animation of two or more figures.

Suppose you have two figures you want to control independently.
Whatever one figure is doing at the moment must have absolutely no ef-
fect on the status of the other. Simple animation sequences for two such
figures are outlined in Table 10-6. For the moment, regard them as wholly
independent sets of programs.

The animation sequence for the first figure has four basic steps: draw
a couple of segments, get a random value, draw the original segments
again if X is equal to 1, or else draw two other segments and return to the
start. A BASIC version of that sequence is shown with line number 100
through 120. It is a very simple control routine.

The second figure goes through a five-step control routine: draw a
segment, get a random value for variable Y, go to Step 5 and draw a sec-
ond segment if Y is equal to 1, do a fixed time delay if Y is not equal to 1,
and then draw the second segment before looping back to the start of that



TABLE 10-6

TWO INDEPENDENT ANIMATION SEQUENCES; A VERBAL DESCRIPTION
AND BASIC PROGRAMMING FOR IMPLEMENTING THE OPERATIONS

FIGURE 1
Operation Basic Programming
Step 1 Draw segments 1.1 and 1.2 100 GOSUB 1100:GOSUB 1200
Step 2 Get a random value for X 105 X = RND(2)
Step 3 If Xisequalto1,gobacktoStep 1 110 IF X=1THEN 100
Step 4 Draw segments 1.3 and 1.4, and 115 GOSUB 1300:GOSUB 1400
go back to Step 1 120 GOTO 100
FIGURE 2
Operation Basic Programming
Step 1 Draw segment 2.1 200 GOSUB 2100
Step 2 Get a random value forY 205 Y = RND(2)
Step 3 If Y is equal to 1, go to Step 5 2101F Y=1 THEN 220
Step 4 Do a short, fixed time delay 215 FOR T=0 TO B0:NEXT T
Step 5 Draw segment2.2,and gobackto 220 GOSUB 2200
Step 1 225 GOTO 200

routine. The BASIC version uses program lines 200 through 225. That,
too, is a simple control routine.

Both examples assume their respective drawing subroutines are in
the system, even though they aren’t shown here. Doing a RUN 100 will
put figure 1 through its routine, and doing a RUN 200 will put the second
figure through its paces. The animation situation, however, calls for run-
ning these two animation sequences simultaneously and independently.
The routine for the first figure has to run without regard for the function
of the programming for the second figure. At one moment, the computer
can be running Step 1 for figure 1 while running Step 3 for figure 2. Some
time later, the computer should be able to run Step 1 for figure 1 again, but
while running Step 2 for figure 2. The two routines must not be syn-
chronized in any way at all. The programming must be written in such a
way that the two routines run asynchronously. Table 10-7 shows how
such a control routine is developed.

The listing in Table 10-7A executes the series of operations for the
first figure. The operation is divided into four distinct phases, and each
phase is carried as a subroutine. In this particular case, variable P1 is the
phase counter; it always carries the value of the phase that is to be ex-
ecuted. Line 100 shows P1 being initialized to 1. That means the sequence
always starts with the operations for phase 1. According to the statement
in line 105, having P1 equal to 1 sends control down to the subroutine at
line 500. That subroutine draws two segments, sets P1 to 2, and then
returns operation to line 110. Line 110 simply loops control back to line

167



TABLE 10-7

EVOLUTION OF SOME ASYNCHRONOUS PROGRAMMING FOR TWO INDEPENDENT

FIGURES

DESCRIBED IN TABLE 10-6: (A) FIRST FIGURE'S PROGRAMMING:;

(B) SECOND FIGURE'S PROGRAMMING; (C) THE FINISHED, COMPOSITE PROGRAM

100
105
110
300
905
S10
311

913

Fi=1

ON F1 GOSUB 500+505,510,515

GOTO 1035

GOSUE 1100:GOSUB 1200 :P1=2:{RETURN

X=RNIM{ 2):P1=3 tRETURN

IF X=1 THEN P1=13RETURN

F1=4 {RETURN

GOSUR 1300 :GOSUE 1400¢P1=13RETURN A

200
205
210
550
555
560
561
565
566
570

p2=1

ON F2 GOSUR 550:555,5605565:570

GOTO 205

GOSUR 2100 (F2=2IRETURN

Y=RNIK 2)IF2=3RETURN

IF Y=1 THEN F2=5!{RETURN

T2=01P2=4IRETURN

T2=T24+1IF T2=350 THEN P2=5!RETURN

P2=4 {RETURN

GOSUR 2200iFP2=1!RETURN B

103
119
115
500
505
51
G1l1
515
5540
559
S540
G6l
565
Sé6

570

Pl=1ipas]
ON F1 GOSUB 500,505,510+515

ON F2 GOBUB 5505555:560,565,570

GOTO 105

GOSUBR 1100:GOSUE 12003P1=2RETURN
X=RNIK 2 ) F1=3 I RETURN

IF X=1 THEN P1=1tRETURN

F1=4 {RETURN

GOSUE 1300:COSUE 14003P1=1tRETURN

COSUE 2100:P2=2

Y=RNI 2 ) $F2=2 1 RETURN

IF Y=1 THEN P2=5!RETURN

T2=0 1P2=4 tRETURN

T2=T2411IF T2>=50 THEN P2=5:!RETURN

F2m4 s RETURN C
GOSUR 2200$F2=1RETURN




Complex-Figure Animation 109

105, where, with P1 now equal to 2, control is sent to the subroutine at line
505. :

Line 505 picks a random value for X, sets P1 equal to 3, and ulti-
mately returns control to line 105 again. This time, P1is equal to 3, soline
105 sends the system to the subroutine that begins at line 510.

Follow the programming in Table 10-7A all the way through, and
you will see that it executes the same series of steps that are outlined for
the first figure in Table 10-6. Every phase of the operation is carried by a
subroutine that executes the steps in that particular operation and then
sets the phase counter to the number representing the next operation to
be performed. The ON ... GOSUB line is home base for all the activity;
that line, working in conjunction with the phase counter, points to the
next series of steps to be performed.

Table 10-7B shows a similar sort of control routine for the second
figure in Table 10-6. Run through the entire cycle, taking special note of
how the time delay is executed—how variable T2 is allowed to increment
until it is greater than or equal to 50.

Thus far in the analysis, the two routines run one at a time; doing a
RUN 100 executes the series of operations for the first figure, and doing a
RUN 200 runs the second figure.

The listing in Table 10-7C completes the task of creating a bit of
asynchronous animation. There are no changes in the phase subroutines
in lines 500 through 570. The steps the figures are to undergo are not
changed. But look at lines 100 through 115.

Line 100 starts both figures with their respective phase-1 opera-
tions. Line 105 then causes figure 1 to execute its phase-1 operation; when
that is done, line 110 causes figure 2 to execute its phase-1 operation.
After that, there is no guarantee the two figures will ever be doing their
phase-1 operations during the same multiplexing cycle again. They can
run entirely independent of one another. That is the essence of asyn-
chronous animation.

PROJECT 10-6

Load Listing 10-3 into your system, then add the initialization and con-
trol routines as shown in Listing 10-6.

10 REM %% PROJECT 10-6

15 REH IOG AND CAT -~ SEQUENCES 1,2 AND 3
20 CLEAR S12!DEFSTR FsS

25 CLSIPRINT @ 410,"00C AND CAT"

30 GOFUB 4000

100 REM X% CONTROL ROUTINE

105 D1=465102=421

110 CLSIGOSUER 11001GOSUR 1200

{cont.)



115 FOR R1=0 TO RND{50)

12¢ GOSUR 116¢

125 BD=RNIC( 10)IBC=RNIC 10)

130 IF BD<3 THEN GOSUE 1140

133 T=101GOSUR 930:GOSUR 1130

140 GOSUB 1150

145 IF EBC<3 THEN GOSUB 1240

150 T=101GOSUR 9501G0O5UR 1230

1585 NEXT R1

160 FOR R2=0 T0O RND{50)

165 MO=RNDC 10 )IEC=RND( 10 )

170 IF MD<3 THEN GOSUR 112¢0:!GOSUR 1140
173 IF RC<3 THEN GOSUB 1240

180 T=10!GOSUR 930:GOSUE 1230

185 T=25iGOSUE ?50:G0SUE 1110:G0SUF 1130
190 NEXT R2

195 GOSUR 1260

200 DFP=1iCF=1

200 FOR R3=0 TO RND(S0)

210 ON DF GOSUR S00+505,510,515,520
213 ON CP GOSUR S505555,560565,570
220 NEXT R3

225 GOSUER 1100!GOSUR 1200

230 GOTO 115

S00 MI=RNIM 10 ) IP=2 I RETURN

505 IF MD<3 THEN DFP=3IRETURN

506 DT=0IDF=4 {RETURN

310 GOSUB 1120!1GOSUE 1140307T=030F=4RETURN
515 DT=0T+H1

316 IF DTx1 THEN DF=5 ELSE DF=4

517 RETURN

520 GOSUE 1110:GOSUB 1130:DP=1IRETURN
950 PC=RND(10):1CP=2IRETURN

935 IF PC<3 THEN CP=33IRETURN

596 CP=13RETURN

960 FOR M=1 TO 4

361 ON M GOSUR 1220,1240,128051290
S62 NEXT M

563 CT=0i1CF=4RETURN

565 CT=CT+1

566 IF CT>25 THEN CF=5 ELSE CFP=4
567 RETURN

570 FOR M=1 TO 4

371 ON M GOSUE 1280,127051230,1210
S72 NEXT M

G73 CP=1IRETURN

950 FOR TD=0 TO TINEXT TIIRETURN

LISTING 10-6 Initialization and control routine to be used with Listing
10-3 as described in Project 10-6

The figures are the dog and cat that were featured in some earlier
projects. The first two sequences, program lines 115-190, run exactly as
before. A third animation sequence—an asynchronous one—is added at
program lines 195 through 573.

Line 195 puffs up the cat’s tail, and line 200 initializes the phase
counters, DP and CP, for the dog and cat sequences, respectively. Line
205 sets up the sequence to run a random number of cycles.



Complex-Figure Animation 1711

The control lines for the asynchronous operations occupy program
lines 210 and 215. Line 210 represents the five-phase operations for the
dog, and line 215 is the five-phase sequence for the cat figure. Here is what
those subroutines do:

Subroutine 500 (dog’s phase 1): Pick a random value for variable
MD); set up phase 2.

Subroutine 505 (dog’s phase 2): If MD is less than 3, set up phase 3;
otherwise, zero the dog’s delay time (variable DT) and set up
phase 4.

Subroutine 510 (dog’s phase 3): Open the dog’s mouth, close the
dog’s eye, zero the dog’s delay time, and set up phase 4.

Subroutine 515 (dog’s phase 4): Increment the delay time; if DT is
greater than 1, then set up phase 5, otherwise set up phase 4
again.

Subroutine 520 (dog’s phase 5): Close the dog’s mouth, open its eye,
set up phase 1 to begin the cycle from the start.

Subroutine 550 (cat’s phase 1): Pick a random value for variable PC;
set up phase 2.

Subroutine 555 (cat’s phase 2): If PC is less than 3, set up phase 3;
otherwise, zero the cat’s delay time (variable CT) and set up
phase 4.

Subroutine 560 (cat’s phase 3): Open the cat’s mouth, close its eye,
and raise its paw; zero the time delay and set up phase 4.

Subroutine 565 (cat’s phase 4): Increment the delay time; if CT is
greater than 25, then set up phase 5; otherwise set for phase 4
again.

Subroutine 570 (cat’s phase 5): Lower the cat’s paw, open its eye,
close its mouth, and set up to run the entire sequence again from
phase 1.

While, indeed, the animation is rapidly switched back and forth be-
tween the dog and cat figures, there is no necessary synchronization of
their activity through this sequence.






Moving FiGures g

from Place

10 Place

Animating complex figures can be a meaningful and rewarding ex-
perience, but all of the animation sequences described thus far leave the
animated figures in some fixed place on the screen. Animation effects can
be greatly enhanced when figure animation is combined with some motion
from place to place. Compare the COUNTRY GAL sequences in the
previous chapter with the notion of having the figure of a man stroll
across the screen. The COUNTRY GAL sequence was a rather com-
plicated animation, but it was anin-place animation—the girl did her sing-
ing and dancing at one particular place on the screen. The STROLL-
ING MAN sequence offered later in this chapter adds the dimension of
place-to-place motion.

There are three categories of place-to-place figure animation. The
simplest deals with single-space graphics; moving figures composed of a
single graphic character. An example is moving a graphic-140 square
around on the screen. The general procedure is to plot the graphic at some
point on the screen, look to a tenative next position on the screen, and if

173



174 CHAPTER 11

the next position is a desirable one, erase the graphic from its old position
and plot it in a new one.

The second type of place-to-place animation involves figures that are
made up of two or more graphic symbols; usually there are two or more
lines having two or more characters in each line. However, the figure does
not change appearance as it moves. The figure of a rocket moving up the
screen is an example. The programming must take into account the size
and shape of the field that encloses the figure.

Finally, there are multiple-frame animations that cause the figure to
change appearance as it moves around on the screen. The procedure is not
as straightforward as one might expect; it isn’t a simple matter of draw-
ing the figure, setting up its next position on the screen, erasing the entire
figure, and then redrawing it at that new place. Erasing the figure before
redrawing a new frame at the next position occupies too much computer
time, causing even moderately complex figures to flicker in an undesirable
fashion. A more subtle erasing procedure is in order, and it is described
later in this chapter.

MOVING SINGLE-CHARACTER FIGURES

Fig. 11-11is a flowchart for moving a single-character figure from place to
place on the screen. The programming first establishes an initial position
for the character. Immediately after that, the character is plotted onto the
screen, and then the program looks to the next character position. If that
next position doesn’t carry the figure to some unwanted place on the
screen, the program erases the figure from its old position and plots it in
the new place. The program loops around and around, effectively moving
the character from one place to the next, until the OK condition is no
longer satisfied, that is, until the next step turns out to be one that would
put the character at some undesirable point on the screen. Then the pro-
gram comes to an end. That’s a general view of the process.

There are a number of approaches to moving a single character, but
this is the one used throughout this book. Note some of its features. First,
the character is initialized as far as its position is concerned; then it is plot-
ted on the screen. In other words, the character is set up and plotted
before the moving routine begins. Once that is done, the graphic begins
moving from a well-defined place.

The FIND NEXT POSITION operation is an important one in this
scheme. The general idea is to look ahead at the character’s next position
on the screen before there is any thought of moving it to that point. An-
ticipating the next move in this fashion leads to smoother graphic control.

Perhaps one of the most important features of the scheme is that the



START

SET
INITIAL
POSITION

PLOT
THE
CHARACTER

FIND
NEXT
POSITION

No
OK >

Yes END

ERASE
CHARACTER
AT OLD
POSITION

PLOT
CHARACTER
AT NEW
POSITION

—

FIGURE 11-1 Flowchart for moving single-character figures

character is erased from its old position immediately before it is drawn in
its next position. It is possible to create the effect of place-to-place motion
by having the operations separated by some other steps, but that method
risks an impression of figure-flicker that is undesirable. Through all the
moving-image projects, you will find the programming for drawing the



176 CHAPTER 11

figure separated from the erasing operation by one short and fast BASIC
statement.

vertical motion

Moving a character up and down on the screen is a matter of adding
or subtracting 64 from its present screen position, since vertically adja-
cent positions on the screen are separated by 64 character spaces. To get a
character to move up the screen, subtract 64 from the current screen posi-
tion, and to get it to move downward, add 64 to the current position. Ver-
tical motion takes place in increments of 64.

A general, up-moving sequence for a single character 191 might go
like this:

100 CP =992

110 NP = CP-64

120 PRINT @ CP,CHR$(128);
130 CP=NP

140 PRINT @ CP,CHR$(191);
150 GOTO 110

Variable CP represents the character’s current position on the screen, and
variable NP stands for its next position. Line 100 thus sets the character
position at 992; that’s part of the initialization operation. Then, line 110
looks up one line, setting NP to that point. Line 120 erases the character
from its old position—the current CP position—by plotting a space-
graphic 128. Variable CP is then equated with NP in line 130, and the
newly established CP value is used in line 140 for printing the graphic 191
in its new position. Line 150 simply loops operations back up to the point
where the program establishes the next position, NP.

The program isn’t complete in the context of the general flowchart in
Fig. 11-1, but it does illustrate how subtracting a 64 from the current
screen position can set the character up one line from its previous place.

Note how similar a down-moving sequence looks:

100CP =32

110 NP=CP +64

120 PRINT @ CP,CHR$(128);
130 CP=NP

140 PRINT @ CP,CHR$(191);
150 GOTO 110



PROJECT 11-1

Try Listing 11—-1. itimplements the features in Fig. 11-1 to make an ar-
row figure rise from the bottom of the screen and stop when it reaches
the top.

10 REM %% FROJECT 1i-1
15 REM GO UP AND STOP
105 CLS
110 CF=9921ET=0
115 PRINT @ CFrCHR$(91)3
120 NF=CF-64
125 IF NF<BT THEN END
130 FRINT @ CFsyCHR$(128)3
: 135 CP=NF
LISTING 11-1 Programming for 140 PRINT @ CFsCHR$(91)3
Project 11-1 145 GOTO 120

Only lines 100 and 110 are different. Line 100 sets the initial screen posi-
tion near the top of the screen, and line 110 sets up a downward motion by
adding 64 to the current screen position.

Line 110 initializes the character position at 992, about halfway
across the bottom line of the screen. Variable BT represents the upper
boundary of the character’s motion. With those two figures thus estab-
lished, line 115 prints the character in its initial position.

Line 120 looks to the next position, one line higher on the screen from
its present one. If that next position has a value that is less than BT —if
the next position will carry the character higher on the screen than
desired—the program comes to an end. Otherwise, line 130 erases the
character from its current position, line 135 sets up the next position, and
line 140 plots the character at that new position on the screen.

You can set the initial position of the character at just about any
PRINT @ location. Try changing line 110 so that CP is set to 960; then
run the program. Try some other initial values for CP: 156, 200, or 1022
for example. It isn’t a good idea to try initializing the character from
PRINT @ location 1023, the one at the very bottom, right-hand corner of
the screen. PRINTing anything at location 1023 causes the display to
scroll upward one line.

You can set the upper boundary of the motion by altering the value
assigned to variable BT in line 110. Use any of the PRINT AT numbers
along the left side of the TRS-80 video worksheet. In the listing, the upper
boundary is set along the top line. Setting BT to 0 thus stops the motion
anywhere along that line. Setting BT to 256, however, will stop the arrow
figure at the fifth line from the top.

177



178 CHAPTER 11

If you want to see continuous, vertical wraparound, change line 125
to look like this:

125 IF NP<BT THEN PRINT @ CP,CHR$(128);:GOTO 110

That modification causes the arrow figure to rise until it hits the specified
upper-boundary line; then it is cleared from the screen and started again
from its initial position.

The program is written so that the motion takes place at the highest
possible speed. Slowing down the motion is a simple matter of inserting a
time-delay routine just after the character is printed in its new position.
For example:

142 FOR T=0 TO 10:NEXT T

The longer the counting range for variable T, the slower the character will
rise up the screen.
Here is a short'summary:

* Set theinitial position for the upward-moving character by setting
the initial value of CP at some valid PRINT @ location number.

¢ Set the upper-boundary line by specifying a value for variable BT
that is found along the left side of the video worksheet, the PRINT
@ values for the beginning of each line.

* Set the speed of motion by inserting a time-delay routine just after
the character is printed in its new location.

Of course you ought to avoid a situation where the initial position
number is smaller than the upper-boundary number. The character would
never find the boundary in such a case, and the program would come to a
halt with an FC error.

The program has the same general form as the previous one. In this
case, however, the character is initialized near the top of the screen, and a
lower boundary, variable BB, marks a line near the bottom of the screen.
See program line 110.

Line 115 prints the character in its initial position, line 120 sets the
new point downward one line from the current position, and line 125
checks to see whether or not the figure is at the lower boundary line. If the
character is at the bottom line, the program goes into a loop at line 125
and latches up until you strike the BREAK key. Otherwise, the program
moves the character by erasing it from its current position (line 130), set-
ting the current position equal to the next position (line 135), and printing
the character in that position (line 140).



PROJECT 11-2

Try Listing 11-2. It uses the features of Fig. 11-1 to make an arrow
figure drop from the top of the screen and stop when it reaches the bot-
tom.

10 REM ¥¥ PROJECT 11-2
15 REM GO DOWN AND STOF
105 CLS
110 CP=32:BB=1022
119 FRINT @ CPyCHR®(92);5
120 NP=CF+64
125 IF NF>EB THEN GOTO 125
130 FRINT @ CFyCHR$(1328);
135 CP=NP

LISTING 11~2 Programming for 140 FRINT B CFPsCHR$(92)3

Project 11-2 145 GOTO 120

Experiment with the initial values in program line 110. In that line,
CP represents the initial position of the character, and BB is the lower
boundary number. Generally, you can specify a lower-boundary line by
setting BB equal to one of the PRINT @ numbers along the right side of
the video worksheet: 63, 127, 191, and so on. Notice that the lower bound-
ary in Listing 11-2 is specified with a 1022 instead of the 1023 that ap-
pears at the end of that line on the video worksheet. This is a necessary ex-
ception to the rule for specifying lower-boundary lines because PRINTing
anything in location 1023 causes the screen display to scroll upward one
line.

Try changing program line 125 to read this way:

125 IF NP>BB THEN PRINT @ CP,CHR$(128);:GOTO 110

Now the arrow drops to the lower boundary, disappears, and then reap-
pears at the initial position. It is an example of vertical motion
wraparound in the downward direction.

Time delays can be inserted just after the character has been printed
in its new position, between program lines 140 and 145. The idea, as with
the upward-moving arrow project, is to lower the rate of motion.

In summary:

¢ Set the starting point of a downward-moving character by setting
the initial value of CP at some valid PRINT @ location number.

¢ Set the lower-boundary line by specifying a value for BB that is
found along the right side of the video worksheet, a PRINT @ lo-
cation that marks the end of a line on the screen. Exception: Use
1022, instead of 1023, to indicate the bottom line as the lower-
boundary line.

179



180 CHAPTER 11

s Slow down the motion by inserting a time-delay routine just after
printing the character in its new position.

The program cannot run properly if you set the character’s initial
position at a place that is lower than the lower-boundary line. In the in-
itialization line, program line 110, CP must have a smaller value than
BB does.

PROJECT 11-3

Listing 11-3 causes a small square figure to bounce up and down on
the screen. Try it for yourself.

10 REM %X PROJECT 11-3

15 REM BOUNCE VERTICALLY

105 CLS

110 BT=192!EE=831

115 CP=2231J=1

120 PRINT @ CPyCHR$(140)}

125 NP=CP+64%.]

130 IF NP<BT OR NF>EE THEN J=J%-1:GOTO 125
135 PRINT @ CPsCHR$(128);

140 CF=NP

145 FRINT @ CPsCHR%(140);5
150 GOTO 125

LISTING 11-3 Programming for Project 11-3

This program combines the programming features for creating up-
ward and downward motion. Notice how program line 110 establishes
both upper and lower boundaries for the motion; those two values set the
extreme limits of the character’s motion.

Program line 115 sets up the character’s initial position—along the
upper boundary in this case.

Variable J determines the direction of vertical motion. As is shown
by the next-position function in program line 125, the character moves
downward whenever J is equal to 1, and upward whenever J is equal to
—1. Line 115 thus sets up the character for an initial downward motion.

Line 130 is responsible for sensing when the character reaches one of
the two boundary lines. Whenever that happens, the value of J is switched
to its opposite sign; the direction of motion is changed.

Tinker with the initial values in program lines 110 and 115 to make
sure you understand how the program works and how to modify it for your
own purposes. As in the previous examples, slowing down the bouncing
effect is a matter of inserting a time-delay routine after the character is
printed in its next position, between program lines 145 and 150.



horizontal motion

Moving a character one space to the right or left is a simple matter of
adding or subtracting 1 from the current screen position. Incrementing
the current position by one moves the character to the right, and
decrementing the position by 1 moves it to the left. That is a simple idea,
maybe even simpler than adding or subtracting multiples of 64 to create
the effects of vertical motion.

What is a bit more difficult, however, is sensing the left and right
boundaries during horizontal motion. The following projects show how
to generate the effects of horizontal motion and sense the left and right
boundaries.

PROJECT 11-4

Try Listing 11-4. It sends a right-arrow figure from the left side of the
screen to the right side. Once the arrow reaches that right boundary, it
stops and the program comes to an end.

10 REM %% PROJECT 11-4

15 REM RIGHT AND STOF
105 CLS

110 CF=1281BR=63

11% PRINT €@ CP,CHR$094)3

120 NP=CP+1

125 IF NPH>=RREINTONF/64)%64 THEN END
130 PRINT @ CPyCHR$(128)3

135 CP=NF

140 PRINT @ CPyCHR$(94)35

145 GOTO 120

LISTING 11-4 Programming for Project 11-4

Program line 110 sets the initial CP value for the figure and
establishes a right-side boundary value, BR. As in the case of the pro-
grams for vertical motion, program line 115 prints the character in its in-
itial position. Line 120 then sets up the next screen position. The
character is to be moving to the right in this project, so the next position is
reckoned as one equal to the current position plus 1.

With the next position thus established, the function in line 125
determines whether or not the character has reached the right boundary
line, an imaginary line running vertically along the right-hand edge of the
screen. If the next-position value is greater than or equal to the right-
boundary function value, the program comes to an end. Otherwise, the
character is moved to its next position.

Setting the right-boundary value, variable BR in line 110, is a rather

181



182 CHAPTER 11

simple procedure. Since the right boundary is an imaginary vertical line,
all you have to do is find the TAB number along the top of the video
worksheet that marks the position of that line. In the sample listing, BR is
set to 63, the rightmost TAB position on the screen. Try changing the
value of BR to 31, and you will see the arrow stop moving about halfway
across the screen.

To get a continuous left-to-right motion of the arrow character,
change line 125 to show:

125 IF NP>=BR+INT(NP/64)*64 THEN PRINT @ CP,CHR$(128);
GOTO 110

Now, when the character reaches the right boundary, it is cleared from the
screen and started from its initial position once again.

The motion can be slowed by adding a time-delay routine after the
character is printed in its new position, between program lines 140 and
145.

PROJECT 11-5

Listing 11-5 moves the arrow character from an initial position near
the right edge of the screen to a left boundary that is established near
the left edge. Try it, comparing the results with previous projects.

10 REM %% FROJECT 11-5

18 REM LEFT ANDIN STOF
105 CLS

110 CP=3191BL=0

115 PRINT @ CPyCHR$(P3)5

120 NP=CF-1

125 IF NPO=BLIINTONF/&4)%é64 THEN END
130 PRINT @ CP.CHR$(128)%
135 CP=NF

140 PRINT @ CPyCHR%$(93)3

145 GOTO 120

LISTING 11-5 Programming for Project 11-5

Line 110 sets the initial value for the character and establishes a left
boundary, BL. In this particular example, the left boundary is along TAB
position 0.

Line 120 is responsible for decrementing the current screen position,
thus creating the effect of right-to-left motion. Line 125 senses contact
with the left boundary by means of a function that is very similar to the
one used in the previous project for sensing right boundary; the only dif-
ference is the use of a less-than expression and the BL variable.

See if you can modify line 125 to create a continuous character



Moving Figures from Place to Place 183

wraparound effect. Where would you insert a time-delay routine to slow
the motion?

PROJECT 11-6

Enter Listing 11-6. It combines the techniques for doing horizontal mo-
tion and sensing the left and right boundaries. In this case, the square
of light oscillates back and forth between boundaries set at TAB posi-
tions 10 and 54.

10 REM X%k PROJECT 1i-6

15 REM BOUNCE HORIZONTALLY
1905 CLS

110 BL=10!1BR=34

115 CP=52311I=1

120 PRINT @ CP,CHR$(140)3

125 NP=CP+I1

130 IF NP<=BL+INT(NF/64)%64 OR NPI=RBR+INT(NF/64)%k64 THEN I=I%-13G0T0 125
135 PRINT @ CFsCHR$(128);

140 CP=NP

145 PRINT @ CPsCHRS$( 1405

150 GOTO 125

LISTING 11-6 Programming for Project 11-6

In the light of previous discussions and projects in this chapter, you
should have no difficulty understanding how and why this program
works.

PROJECT 11-7

Listing 11-7 runs a square of light around within a bordered area. The
visual impression is that the light is bouncing off the segments of the
border figure; the action reminds one of the popular Ping-Pong and
Breakout electronic games. Try it.

10 REM Xk PROJECT 11-7

15 REM EOUNCING EALL

20 CLEAR S12

2% CLS

30 FPRINT @ 0 ,BTRING$(64,176)5 IFRINT @ 896 STRINGH{ 642131)%
35 FOR N=0 TO 14IFRINT @ 64%N,CHR${191);INEXT N

40 FOR N=0 TO 14:!PRINT @ &3+64XNsCHR$C 1915 INEXT N

100 BT=441RE=8951BL=0BR=43

105 CP=54211I=11J=1

110 PRINT @ CPyCHR$( 1403

113 NP=CP+I+64%J

120 IF NP<KET OR NFXBE THEN J=J%-13GQTO 115

125 IF NP<=BL+INT(NF/64)%64 OR NP-=BR+INT(NP/64)%64 THEN I=I4-1:GOTO 115
130 PRINT € CPyCHR$(128)5

138 CP=NFP

140 PRINT @ CPsCHR$(140);

145 GOTO 118

LISTING 11-7 Programming for Bouncing Ball, Project 11-7



184 CHAPTER 11
Here is a section-by-section analysis of the program:

Lines 25-40: Clear the screen and draw the outside border figure.

Line 100: Set the four boundary values.

Line 105: Initialize the square’s position and direction of motion.

Line 110: Print the square in its initial position.

Line 115: Figure the next screen position.

Line 120: If the square is at either the top or bottom boundary,
switch the direction of vertical motion.

Line 125: If the square is at either the right or left boundary, switch
the direction of horizontal motion.

Lines 130-140: Erase the character from its current position, set the
next position, and redraw the character.

Line 145: Repeat the sequence indefinitely.
summary of single-character motion

All single-character motion takes place by drawing the character,
looking to the next position on the screen, and, if that position is a
desirable one, erasing the character from its current position and drawing
it in the new one. Horizontal motion occurs when the current position is in-
cremented or decremented by 1; vertical motion takes place when the cur-
rent position is increased or decreased by 64.

The next-position number is always used for determining whether or
not the character has reached a designated top, bottom, left, or right
boundary on the screen.

MOVING MULTIPLE-CHARACTER FIGURES

The procedures for moving a multiple-character figure, a figure composed
of two or more graphic characters, are practically identical to the single-
character procedures just described. There is one additional feature,
however, that must be taken into account: it is a rectangular field of
characters, rather than a single character, that must be dealt with.

The variables for the figure’s current position and next position are
still applicable; those are variables CP and NP, respectively. In our pres-
ent context, they apply to the first character in the first line of the
multiple-character figure.

It is necessary to deal with a second critical place in the multiple-
character figure: the last character in the last line of the figure. That place
will be designated with variables CD and ND—current position of the
diagonal point and next position of the diagonal point. That particular



MIOVING rigures rrom rlace to riace 180

nomenclature reflects the fact that the last character in the last line in a
rectangular field is situated diagonally from the first character in the first
line. The only exception—a trivial one—is the case where the figure is com-
posed of a single line of characters.

Figure 11-2 shows a rectangular field that just happens to measure
8 X 3; there are three lines having eight characters in each line. The objec-
tive is to move that field around on the screen, assuming of course that
some meaningful, multiple-character figure is enclosed within it.

Motion variables CP and NP still apply, but they refer only to the
first character in the first line of the field. The newly introduced variables
play the same roles but refer only to the last character in the last line.

Vertical motion of the field is achieved by displacing the value of CP
by 64. Assuming that the remaining characters in the field are keyed to
the first one in the first line, adding 64 to the value of CP moves the entire
field downward one line, and subtracting 64 from CP moves the entire
field upward a line. Incrementing the value of CP by 1 moves the field to
the right, and decrementing CP by 1 moves it to the left. Thus the pro-
cedure is identical to the one used for moving a single-character figure; the
motion of a multiple-character figure is keyed to the motion of the
character space located in the upper left-hand corner of the field. It is
assumed that the remainder of the field is printed with reference to that
one character position.

It is not enough, however, simply to draw the figure field as it moves
from place to place. The field must be erased in some fashion prior to being
redrawn in its next position. For the current series of projects, the field is
erased by printing a field of the same dimensions that is filled with
graphic 128s—blank spaces. Therefore if a PRINT @ CP,F(1) draws the
figure field at position CP (upper left-hand corner of it), a PRINT @
CP,F(0) can erase the figure from its current position. That supposes, of
course, that string F(0) is composed entirely of graphic 128s.

o

.y
i
i

FIGURE 11-2 An 8 x 3image . .
frame, showing the ... l.. b wwn 1"
upper-left key point
(CP) and the lower-
right key point (CD)




186 CHAPTER 11

Thus there are two strings for each field to be moved. One we will call
F(1), the one that prints the multi-character figure, beginning from key
position CP. The other field, called F(0), prints all spaces, also beginning
from position CP.

A move one step to the right is thus accomplished by this sort of pro-
gramming sequence:

PRINT @ CP,F(1);
NP = CP + 1
PRINT @ CP,F(0);
CP=NP

PRINT @ CP,F(1);

The first statement prints the figure, the second establishes the next
screen position, the third statement erases the figure from its current
position, and the last two statements effectively draw the figure in its new
position.

There is yet another special feature involved in moving multiple-
character figures, and that is sensing the boundaries of motion. There is
nothing different in this regard when you are working with the top and left
boundaries of motion. The key character space, the one represented by
values CP and NP, is located in the upper left-hand corner of the moving
field; thus its next position is a reliable indicator of whether or not the
figure is making contact with an upper or left boundary line. However, the
rest of the character field is offset from that key character space in the up-
per left-hand corner; it is a fact that other parts of the field will make con-
tact with bottom or right-side boundaries before the key character will.

With regard to Fig. 11-2, the purpose of the diagonal key point is to
sense contact with a right or bottom boundary. The geometric relation-
ship between the upper-left and lower-right keys in the field is a simple
one. The position of the upper-left key is carried through the programming
by variable CP, and the position of the diagonal, lower-right key is carried
by variable CD. CD is mathematically related to CP in this way:

CD=CP +(s-1)+64%(n-1)
Where s is the number of characters in each line of the field
n is the number of lines in the field.

As an example, the 8 x 3 character field in Fig. 11-2 might be situated on
the screen where CP is equal to 500. That being the case, CD is located at
PRINT @ location 635. When CP is incremented to position 501 (horizon-
tal motion of the field), the current diagonal value, CD, increments to 636.

Also recall that the next-position variable, NP, plays a vital role in
the technique for moving figures on the screen. Its diagonal counterpart,
ND, is related to NP by:



Moving Figures trom Flace to Place 187
ND =NP + (s-1)+ 64*(n-1)

Again, s refers to the number of characters in each line of the field, and n
represents the number of lines in the field.

The use of the following BASIC statements should thus make sense
at this point:

NP=CP-1:ND=NP+7+64"2
and
CP=NP:CD=ND

The first line is used for setting up the next position for the character field,
a field that happens to be moving to the left and is made up of an 8 x 3
character configuration. That line establishes the next point for the upper-
left key, NP, and the next point for the lower-right key, ND. Assuming the
figure can move that one step to the left, it is cleared from the screen, and
then the new positions for CP and CD are established by the second lire in
that example.

PROJECT 11-8

Try in Listing 11-8 to draw a simple graphic that looks something like a
white picture frame. It is enclosed in a 4 x 2 field, and it oscillates up
and down on the screen.

10 REM %X PROJECT 11-8

15 REM COMPLEX FIGURE ~~ VERTICAL

20 CLEAR S12IDEFSTR F

25 GOSUB 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 CP=321Ch=CP+3+64

115 J=1

120 PRINT @ CPysF(1)}

125 NP=CF+64%JINI=NP+31+64

130 IF NP0 OR NDX1022 THEN J=JX%-1:1G0T0 125
135 FRINT @ CPsF(0)5

140 CFP=NFIIF=ND

145 PRINT @ CPsF(1)s

150 GOTO 125

4000 REM X% STRING-FACKING SUBROUTINE

4005 FOR N=0 TO 1

4010 GOSUBR 43001F(N)=F

4015 NEXT NIRETURN

4500 F=""

4505 READ A

4510 IF A=0 OR A=1 THEN RETURN

4515 IF Axl THEN F=F+CHR$(A)IIGOTO 4505

4520 READ BIF=F+STRINGH{ABS{(A)sRIIGOTO 4505
5000 REM %% DATA LISTINGS

5010 DATA ~4+128+246r~4+245-4,12851

S110 DATA 191+-2y13121919269-4+2451919-2+1769191»1

LISTING 11-8 Programming for Project 11-8



188 CHAPTER 11

The program is formatted just like most of the string-packing
routines described in earlier chapters. There is an initialization routine in
lines 20 and 25, a control routine running from line 105 through 150, a
string-packing subroutine that begins at line 4000, and a DATA listing
that begins at line 5000.

The program packs two strings, F(0) and F(1). F(0) is the “‘erase”
frame that fills two lines of four characters apiece; each character is a
graphic-128 blank space. Note that it is packed as a single string variable;
the control codes for dropping down a line and to the beginning of the next
are included in that one string. String F(1) draws the picture-frame image.

The motion is generated by the control routine. It begins by setting
the key point, CP, to 32—a spot at the top and near the middle of the
screen. That same line also calculates the initial value for the diagonal
key, CD. The frame is four characters wide and two lines long; thus CD is
reckoned, by equations offered earlier, to be equal to CP plus 67.

Line 115 initializes the vertical motion in a downward direction, and
line 120 simply prints the figure in its initial position. Notice that the
printing operation refers to the upper-left key position; the figure is drawn
in a left-to-right, top-to-bottom fashion, just as all the previous multiple-
line drawings have been printed.

Line 125 sets up the next position for the figure, and line 130 tests
the new positions to see whether or not the figure is making contact with
the top or bottom boundary. And here is a vital point. The top boundary is
fixed at zero in this example, and the figure must be at the top of the
screen if NP is less than zero. Setting the top boundary is a matter of com-
paring the value of the NP figure with the top-boundary figure. The bot-
tom boundary is set at 1022, but it is compared with the ND figure. You
want the figure to stop moving upward when the top of the figure reaches
the top boundary, but you want it to stop moving downward when the bot-
tom of the figure reaches the bottom boundary. Thus, there is the need to
compare upper key’s next-point value with the upper-boundary value, and
the lower key’s next-point value with the bottom-boundary value. If the
job is done any other way, the figure can slide off the top or bottom of the
boundaries.

Line 135 uses the erase frame to clear the entire figure from its cur-
rent position. Then line 140 adjusts the current key positions to their new
positions, and line 145 completes the job by printing the figure in its new
position.

Always use the upper-left key point for sensing top and left bound-
aries, and the lower-right key point for sensing bottom and right bound-
aries.

At this point you should be able to justify every function and state-
ment in that control routine. See if you can figure out how to change the
four boundary values.



PROJECT 11-9

Enter and RUN Listing 11-9. It uses the same figure but moves it back
and forth in a horizontal direction. Take special note of how the condi-
tional statements in line 130 compare the upper-key position with the
left-boundary value and the lower-key position with the right-boundary
value.

10 REM %% FROJECT 11-9

15 REM COMFLEX FIGURE —-— HORIZONTAL

20 CLEAR S12IDEFSTR F

25 GOSUBR 40090

100 REM X% CONTROL ROUTINE

105 CLS

110 CP=128IC0=CF+3+64

115 I=1

120 PRINT @ CPsF(1)s

125 NF=CP+IIND=NP+3+44

130 IF NP{=0+INT(NP/64)%64 OR MD>=43+INT(ND/&4 ka4 THEN I=I%-13G0OT0 125
133 PRINT @ CPsF(0 )}

140 CP=NF{OP=ND

145 FRINT @ CFsF(1)5

180 GOTO 123

4000 REM ¥¥ STRING-FACKING SURROUTINE

4005 FOR N=0O T0 1

4010 GOSUR 45003F({ NI=F

4015 NEXT NIRETURN

43500 F=""

4505 READ A

4510 IF A=0 OFR A=1 THEN RETURN

4515 IF AX>1 THEN F=F+CHR${AICGOTO 4505

4520 READ BIF=F+STRING$(ABS(AI,R)IGOTO 45035
5000 REM %% DATA LISTINGS

5010 DATA 451285269 ~45245-4512841

5110 DATA 191,-251319191 926545245191 v~24176519141

LISTING 11-9 Programming for Project 11-9

PROJECT 11-10

Listing 11-10 combines the horizontal and vertical motions from the
two previous projects to create the visual impression of a bouncing pic-
ture frame. Enter and RUN it.

10 REM %X PROJECT 11-10

15 REM ROUNCING COMPLEX FIGURE

20 CLEAR T12IDEFSTR F

25 GOSUE 4000

100 REM ¥% CONTROL ROUTINE

105 CLS

110 CF=1281CD=CP+3+64

115 I=1tJ=1

120 PRINT B CPsF(1)$

125 NP=CP+I+464XJIND=NP+3+64

130 IF NP<=0+INT(NP/64)k64 OR NOF=6I+INTINI/64 )ké64 THEN I=I%-13G0T0 125
135 IF NP<0 OR NDX1022 THEN J=JX-1160TO0 128

{cont)

189



140 FRINT @ CFyF(0)3

145 CP=NPICDO=ND

150 PRINT @ CFsF(1)5

155 GOTO 125

4000 REM %X STRING-FACKING SURBROUTINE

4005 FOR N=0 7O 1

4010 GOSUR 43500IF(N)=F

4015 NEXT NIRETURN

4500 F=""

4505 READ 4

4510 IF A=0 0OR A=1 THEN RETURN

4515 IF Ar1 THEN F=F+CHR&(A)IGOTO 4505

4520 READ BIF=F+STRINGH(ABS{A)»K)IIGOTO 45035
5000 REM ¥X DATA LISTINGS

5010 DATA ~4,128y265-4,24,-4512851

5110 DATA 191:-25131,191+26y-4224»191y-2917621%911

LISTING 11-10 Programming for Bouncing Complex Figure, Project
11-10

MOVING ANIMATED FIGURES

For our purposes, a moving animated figure is one that changes ap-
pearance as it moves from place to place on the screen. Achieving this kind
of high-level animation calls for combining the principles of successive
framing described earlier in this book with the techniques for moving
multiple-character figures.

In principle, it is a straightforward procedure. The task begins by
defining the animation frames and packing those frames into string
variables. Then you must create one or more erasing frames and pack
them into some string variables, too. Finally, you write a control routine
that coordinates the drawing of the frames with the principles of figure
motion: draw one of the animation frames, set up the next position for the
next animation frame, erase the first frame from its position, and draw
the next frame in that next position on the screen. Indeed, the difficulty of
the task is determined more by the complexity of the figure and its frames
than by the animation and motion techniques. ,

In actual practice, however, there are some potential problems with
image flickering. When you are animating figures that are to remain fixed
in one place on the screen, you avoid image flickering by applying the
technique of limited-segment animation, changing only small portions of
the figure at any given moment. However, limited-segment animation is
not appropriate when the figure has to move from place to place on the
screen; moving just one segment of the figure at a time would distort the
image in a wholly unsatisfactory way.

Thus, it would seem that the entire figure—the entire image
frame—must be completely erased before the new frame can be drawn in
its new position on the screen; and even frames of moderate size require an
erasing time that produces an obvious flickering effect.



Moving Figures from Place to Place 191

The way around the flickering difficulty in the case of moving figures
is a technique called trailing-edge erasing. Instead of erasing an entire
frame before drawing a new frame in the next position on the screen, you
erase only the edge opposite the direction of the old frame. The new frame
is then drawn over the remaining elements of the old one. The erasing
operation is thus limited to a very few character spaces—those that do not
contain any image information when the new frame is drawn.

The technique is perhaps better understood by being shown in a
specific example.

PROJECT 11-~11

Use the three animation frames in Fig. 11-3 to create the impression of
a man walking from left to right across the screen. Refer to the pro-
gram in Listing 11-11.

10 REM ¥k PROJECT 11-11

15 REM STROLLING MAN

20 CLEAR S12iDEFSTR F

25 CLSIFRINT @ 474,"STROLLING MAN"

30 GOSUE 4000

35 CLS

100 REM %% CONTROL ROUTINE

110 CLS ,

120 CP=5123CO=CP+64X5+9

125 GOSUE 1010

130 FOR S=1 TO 4

135 NF=CP+13ND=NF+64K5+9

140 IF ND»=63+INT(ND/64)%64 THEN CLSIGOTO 120
145 GOSUE 1001

150 CP=NFiCD=ND

155 ON S GOSUE 1010,1020,103051020

160 NEXT 5

170 GOTO 130

1000 REM ¥X DRAWING SUBROUTINES

1001 PRINT @ CFsF(0)5 tRETURN

1010 FRINT @ CFsF(1)35tRETURN

1020 PRINT @ CPsF(2)5 tRETURN

1030 PRINT @ CPsF(3)5 IRETURN

4000 REM X% STRING-PACKING SUBROUTINE
4010 FOR N=0 TO 3

4015 F(N)=""

4020 GOSUB 4500

4030 FON)I=FONHF

4035 IF A=0 THEN FONDSF(N)HCHR$(26)+STRINGS( 10,24 )1GOTO 4020
4040 NEXT N

4045 RETURN

4500 F=""

4505 READ A

4510 IF A=0 OR A=1 THEN RETURN

4515 IF A>1 THEN F=FCHR$(A)!COTO 4505
4520 READ E:F=F+STRINGS(ARS(A)»B)IIGOTO 4505
4525 RETURN

5000 REM ¥% DATA LISTING

{cont.)



5001 DATA 128s26524,128526924512852624,128,265249128526124,12851
5011 DATA 195,175,183,157519650

5012 DATA 1955184,19171485196+0

G013 DATA 195+1715191+1495196+0

5014 DATA 1955175:51915149519650

5015 DATA 195517051915151519650

G016 DATA 195,-45131519551

G021 DATA 195,17521835157519640

5022 DATA 194+176518451915180919640

5023 DATA 19351905151517151915151+17351445194,50
5024 DATA 193:130513151755191,1895144,195,0

S025 DATA 195917051915159,1895-25176519340

5026 DATA 195,-45131,195,1

5031 DATA 195,17551835157519640

G032 DATA 193+~2+176518451911148519640

5033 DATA 130s1759148517151915151514351404135,13140
5034 DATA 195,1755191,189,176519550

S035 DATA 193,17651885143512951305139,1735,-2517650
G036 IATA 1945-251315129919751

LISTING 11-11 Programming for Strolling Man, Project 11-11

FIGURE 11-3 Animation frames for Project 11-11

First load the program into your TRS-80 and give it a try so you can
see it at work. Double-check the DATA listings, especially, if you have dif-
ficulty with the execution of this animation.

The basic walking sequence is generated by drawing of Frames 1, 2,
3,2,1....Themotion of this animated figure is to be from left to right, so



Moving Figures from Place to Place 193

each frame is drawn after its upper-left key point, variable CP, has beenin-
cremented by 1. The overall sequence thus looks like this:

Draw Frame 1.
Increment CP.
Draw Frame 2.
Increment CP.
Draw Frame 3.
Increment CP.
Draw Frame 2.
Increment CP.
Draw Frame 1.
Increment CP.

That sequence is repeated until the figure reaches the right-hand side of
the screen. In this particular program, the figure is thenrestarted from its
initial position on the left side of the screen.

Obviously some sort of erasing has to take place before the incre-
menting and drawing of the next frame. Otherwise the figure would leave
behind a trail of graphics that are situated in the first column of graphics
on the left side of each frame. To get around that problem, the program
uses a Frame 0. It is the trailing-edge erasing frame, and it is made up of
six graphic 128s that are lined up vertically. Just prior to incrementing
CP, Frame 0 is drawn at the current CP position, and that operation
erases only the vertical line of graphics along the left-hand edge of the cur-
rent frame, which in this case is the trailing edge. If the figure were mov-
ing to the left, the trailing edge would be along the right-hand edge of the
figure field. If it were moving upward, the trailing edge would be along the
bottom, and if the figure were moving downward, the trailing edge would
be along the top of the frame.

This particular figure is built into a 10 x 6 field—six lines of ten
characters each. Without the trailing-edge erasing technique, the pro-
gram would have to clear 60 character locations before the next frame
could be printed in its next position. Here, however, it is necessary to
erase only six character locations, a 10:1 reduction in erasing speed. Thus
there is virtually no flickering in the animation/motion sequence.

So this animation sequence actually calls for four frames: the three
main drawing frames in Fig. 11-3 plus a trailing-edge erasing frame. If the
figure had to move vertically as well, there would be a need for another
erasing frame that would clear one line of ten characters at the top or bot-
tom of the frame.

The trailing-edge frame is packed from the DATA in program line



194 CHAPTER 11

5001. Notice that it is a single string composed of six graphic 128s that are
positioned vertically by using the control sequence 26,24. The control 26
drops the cursor down a line, and the 24 backs it up one space. Thus draw-
ing the string that is packed from DATA line 5001—doing a PRINT @
CP,F(0)—erases six successive, vertically arranged character spaces,
beginning at screen position CP.

The Frame 1 string, F(1), is packed from DATA in lines 5011 through
5016. The entire field must be defined in each frame. Blank spaces must be
represented by graphic codes that clear those spaces, and there can be no
skip-over operations such as STRING$(10,25). The field does not have to
be completely defined, and skip-over operations are often necessary when
you are working with in-place animations and limited-segment animation.
But here, every character space within the field must be defined in one
way or another. Why? Because with the trailing-edge erasing technique a
new figure is drawn over a significant portion of the old one, and leaving
some of the character spaces undefined carries the risk of leaving behind
some elements of the previous frame.

Using those same important guidelines, Frames 2 and 3 are packed
into strings F(2) and F(3), using the DATA in lines 5021 through 5026,
and lines 5031 through 5036.

Now notice that-line 4035 in the string-packing subroutine is a bit
more complicated than it has been in past programs. The idea is to save
you the trouble of including a lot of 26,— 10,24 sequences in each DATA
line that must be ended with control codes to point to the beginning of the
next line in the field. Every time the string-packing subroutine READs a
zero, it inserts the control codes for resuming the drawing at the begin-
ning of the next line in the frame or field.

The drawing subroutines in program lines 1000 through 1030 are
quite simple. They simply draw their respective string-packed frames and
return to the control routine. Actually, there is nothing in the drawing
subroutines, string-packing subroutine, and DATA listings that tell one
that the figure will be moving from place to place on the screen. That is all
handled by the control routine in lines 100 through 170.

Looking over the control routine, you should see that it closely
resembles a routine for moving a multiple-character figure from left to
right across the screen. Line 110 clears the screen, line 120 sets the initial
positions for the upper-left and lower-right key points in the frame, and
line 125 draws Frame 1 in that position.

The FOR ... NEXT statement surrounds the operations in lines 135
through 155. Those operations represent the four phases of the walking
cycle. Notice, for example, the ON . . . GOSUB statement in line 155. As S
is incremented from 1 through 4, line 155 causes the program to draw
Frames 1, 2, 3, and 2 in that sequence.



Moving Figures from Place to Place 195

Line 135 sets the next position for the frame, line 140 tests the posi-
tion of the lowerright diagonal to see whether or not the figure has
reached the right boundary limit of the motion, line 145 does the trailing-
edge erasing operation, line 150 equates the current frame position with
the tested next-position figures, and line 155 draws the appropriate frame
in that new position. Line 160 simply causes the entire framing cycle to
start over from Frame 1.






Keyboard Control
and ConTACT

SensiNg

..........................................

After you have mastered the techniques for drawing, animating, and mov-
ing figures on the screen, it is perhaps inevitable that you begin thinking
about arcade-type games—games that are programmed so that a player
can interact with the ongoing animations in some meaningful fashion. Vir-
tually all of the previous discussions have dealt with procedures for setting
up prescribed sequences of animation effects, but setting up some games
calls for introducing control mechanisms that have not yet been described
in much detail.

Any interactive game requires some manual control on the part of
the players. The only manual control mechanism available on the standard
TRS-80 system is its keyboard, so it should come as no surprise that
keyboard control is a vital part of the programming for arcade-type games.

A second kind of control for animated games is contact sensing. Pro-
gram routines must be able to sense a contact between two different
figures, and that contact must eventually lead to an appropriate response.

This chapter deals with the programming for keyboard controls and

197



198 CHAPTER 12

sensing contact between two figures. It concludes with a simple missile-
shooting game that demonstrates some of the control mechanisms.

KEYBOARD CONTROL

There are three different ways to work with the TRS-80 keyboard from
BASIC programs. The two most common ones, those using INPUT and
INKEY$ statemernts, can be used quite effectively under many cir-
cumstances. The third technique, directly addressing the keyboard, can be
used in any situation requiring a keyboard input; the technique is equally
effective through BASIC and machine language programming.

The first project shows how to use the INKEY$ function to initiate
some animated activity.

PROJECT 12-1

Listing 12~1 is a short key-controlled program that “‘launches’ a
graphic 191 whenever the RETURN key is depressed. Enter and RUN
it.

10 REM %% FROJECT 12-1

15 REM KEY-INITIATED MOTION

20 DEFSTR F

28 FO=CHR$(128)!F1=CHR$(191)

100 REM %% CONTROL ROUTINE

105 CLS

110 CP=9271J=0

115 PRINT @ CPsF1

120 IF INKEY$<:CHR$(13) THEN 120 ELSE J=-1
125 NP=CF+64%J

130 IF NP<=0 THEN FRINT @ CF,F0IGOTO 110
133 FRINT @ CFyFO

140 CP=NF

145 PRINT @ CPyF1

150 GOTO 125

LISTING 12-1 Programming for Project 12-1

Upon running this program, you will see a graphic 191 rectangle
situated near the bottom middle of the screen. It remains there until you
strike the ENTER key. At that moment the ‘“‘missile” rises toward the top
of the screen. Once it reaches the top, it is automatically returned to its in-
itial position, and launching it again is a matter of releasing and striking
the ENTER key once again.

Notice in program line 110 that the motion of the figure, variable J, is
set to 0. That holds it fixed on the screen until the program reaches line 120.

The ASCII control code for the ENTER key is 13, so as long as the



Keypoard Lontrot anag vontactsensing 199

ENTER key is not depressed, the INKEY$ statement in line 120 con-
tinually loops to itself. However, once you strike the ENTER key, motion
variable J is set to — 1, and the program begins executing from line 125.
That portion of the program moves the figure upward until line 130 senses
contact with the top of the screen. At that moment, the figure is cleared
and control loops back to program line 110, where the whole routine is in-
itialized once again.

Other keys could be used for initiating the activity in this
demonstration. Using CHR$(70) in place of CHR$(13) in line 120 would
launch the figure when you strike the F key. The idea is to use an ASCII
code number for the key that is to initiate the action.

In that particular program, program activity is essentially halted at
line 120 until the ENTER key is depressed. Halting the entire program
until a key depression occurs is not always desirable; it is often necessary
to continue some sort of screen activity, then alter the nature of that ac-
tivity when the key is depressed. That can be accomplished by jumping to
some portion of the program other than the line that carries the INKEY$
statement.

A good many experienced TRS-80 programmers believe that the IN-
KEY$ function is usually more troublesome than helpful, however. Also,
for in-line game-playing purposes, the INPUT function is unquestionably
more troublesome than it’s worth. (The INPUT function definitely stops
all ongoing activity.) The alternative is to address the keyboard directly.

Table 12-1 shows the decimal addresses and read-only data from the
TRS-80’s keyboard. Only the lower-case characters are represented here,
but that is usually a more-than-adequate listing.

Suppose you want to know whether or not the ENTER key is
depressed. According to the table, PEEKing into address location 14440
will turn up a data value of 1 if, indeed, that key (and only that one) is
depressed. That feature can be used in the previous program listing by
replacing line 120 with this one:

120 IF PEEK(14440)<>1 THEN 120 ELSE J=-1

Suppose you want to take some action that is determined by the left-
and right-arrow keys. If the right-arrow key is depressed, PEEK (14440)
will yield a value of 64. If the left-arrow key is depressed, PEEK (14440)
will be equal to 32. If both the right- and left-arrow keys are depressed at
the same time, PEEK (14440) will turn up a value of 96—the sum of their
individual values.

Enter the program and play with it for a while. See if you can work
out an INKEY$-type procedure for doing the same thing. It isn’t easy.

The direction of motion of the graphic is determined by program
lines 120 and 125. Line 120 is satisfied if the left-arrow key is depressed, if



TABLE 12-1
KEYBOARD CODES FOR THE LOWER-CASE KEYS

Key Peek Addr. Data
@ 14337 1
A 14337 2
B 14337 4
C 14337 8
D 14337 16
E 14337 32
F 14337 64
G 14337 128
H 14338 1
! 14338 2
J 14338 4
K 14338 8
L 14338 16
M 14338 32
N 14338 64
0 14338 128
P 14340 1
Q 14340 2
R 14340 4
S 14340 8
T 14340 16
u 14340 32
\Y 14340 64
W 14340 128
X 14344 1
Y 14344 2
Z 14344 4
0 14352 1
1 14352 2
2 14352 4
3 14352 8
4 14352 16
5 14352 32
5 14352 64
7 14352 128
8 14368 1
9 14368 2
: 14368 4
; 14368 8
, 14368 16
- 14368 32
. 14368 64
/ 14368 128
ENTER 14440 1
CLEAR 14440 2
BREAK 14440 4
t 14440 8
| 14440 16
- 14440 32

14440 64

(SPACE) 14440 128




PROJECT 12-2

Try Listing 12-2. It lets you set the horizontal position of a graphic 191,
using the left-and right-arrow keys as control keys. Depressing the left-
arrow key moves the graphic to the left; it moves at a constant speed
as long as that key is depressed and the figure has not reached the ex-
treme left side of the screen. Releasing the key stops the motion. The
figure is moved to the right when the right-arrow key is depressed. The
motion also stops whenever both keys are depressed at the same time.

10 REM ¥k PROJECY 12-2

15 REM KEY-CONTROLLED MOTION

20 DEFSTR F

25 FO=CHR${128)1F1=CHR$(191)

100 REM %k CONTROL ROUTINE

105 CLS

110 CP=92711I=¢

115 PRINT @ CPsF13

120 IF FEEK( 14440)=32 THEN I=-1iGOTO 133
125 IF PEEK(14440)=64 THEN I=1:1GOTOQ 1335
130 GOTO 120

135 NP=CF+1

140 IF NF<=INT{NP/64)%64 OR NPr=63+INTINF/64)%664 THEN 120
145 PRINT @ CFyFO3

150 CP=NP

155 PRINT @ CPyF1s

160 GOTO 120

LISTING 12-2 Programming for Project 12-2

PEEK (14440) equals 32. That being the case, the horizontal motion vec-
tor, I, is set to — 1, line 125 sets the next position, line 140 checks for the
edges of the screen, and lines 145 through 155 move the figure to its next
position if the edge of the screen is not immediately at hand.

The PEEK statement in line 125 is satisfied if the right-arrow key is
depressed. Then the horizontal motion vector is set to 1, resulting in mo-
tion to the right.

If both keys happen to be depressed at the same time, the PEEK
statement will turn up a data value of 96, and neither line 120 nor 125 will
be satisfied. In that case, the program defaults to line 130, which loops the
program back up to line 120.

Incidentally, if no key is depressed, the PEEKSs in lines 120 and 125
will turn up data values of 0, and that satisfies neither of the figure-
moving conditions.

Check your understanding of the technique by devising a similar pro-
gram that uses the up- and down-arrow keys to position the graphic in the
vertical direction. ‘

Aside from combining a couple of different keyboard control techni-
ques, the program also shows how two different graphics can be moved

201



PROJECT 12-3

Listing 12-3 combines the INKEY$ and keyboard PEEK technigues.
Upon running the program, you will see a graphic 191 rectangle with an
up-arrow figure perched on top of it. Working the right- and left-arrow
keys, you can position those graphics anywhere along the bottom of
the screen. Striking the ENTER key ‘‘fires” the arrow from its current
launch position. The arrow rises until it reaches the top of the screen.
After that, the arrow is returned to the launch position, and the
assembly can be moved back and forth until the arrow is launched
again.

10 REM XX FROJECT 12-3

15 REM ROCKET LAUNCHER

20 DEFSTR F

25 FO=CHR$(128)IF1=CHR${ 191 )IF2=CHR$( 91
100 REM %% CONTROL ROUTINE

105 CLS

110 CPO1)=927ICR(2)=CP(1)-6411=01J=0

115 PRINT @ CP(1)sF153PRINT @ CF(2)sF25
120 IF PEEK(14440)=32 THEN I=-1:1G0T0 140
125 IF PEEK(14440)=64 THEN I=1:G0OTO 140
130 IF INKEY$=CHR$(13) THEN J=-13G0T0O 170
135 GOTO 120

140 NP(1)=CP{1)+1

145 IF NPCL1)=INTONF(1)/64)%k64 OR NPCL)5=63+INTONP( L )/64 yhéd THEN 12
130 PRINT @ CP(1)yFO5IFRINT B CP(2)yF03
155 CPC1)=NP(1)ICF(2)=CF({ 1)~44

160 FRINT @ CF(1)sF15FRINT @ CF(2)sF25
165 GOTO 120

170 NP(2)=CP(2)+464%J

175 IF NP(2)<=0 THEN PRINT @ CF(2)sF03iCP{2)=CF{ 1)-6431G0TO 115
180 FRINT @ CP(2)yF03

183 CF(2)=NP(2)

190 FRINT @ CP(2)sF2;

195 6470 170

LISTING 12-3 Programming for Project 12-3

together under one set of circumstances, then moved independently under
another set of circumstances.

The key controls appear in program lines 120, 125, and 130. The
PEEK statement in line 120 is sensitive to a depression of the left-arrow
key; when it is satisfied, the figures move to the left. Line 125 looks for a
depression of the right-arrow key, moving the figures to the right. Line
130 is sensitive to striking the ENTER key, the action that launches the
arrow figure.

The figures are defined in line 25. FO is the clearing figure, F1
represents the graphic 191 “arrow launcher,”” and F2 is defined as the ar-
row figure itself. Line 110 initializes the program, using CP(1) as the cur-
rent position of the launcher and CP(2) as the current position of the ar-



Keyboard Control and Contact Sensing 203

row. Note that CP(2) is equal to CP(1)—64; that fixes the arrow on the
character space directly above the launcher.

Whenever the figures are to be moved to the left or right, lines 120
and 125 send program control down to line 140. At that point, the pro-
gram sets up the next position for the launcher figure; if it isn’t an off-
screen position, both figures are erased from their current positions (line
150 in the program), the current values are adjusted to the next-position
values (program line 155), and both figures are printed in their new posi-
tions (program line 160). Wherever the launcher goes, so goes the arrow.

When the RETURN key is depressed, line 130 is satisfied and the
vertical motion vector, J,is set to — 1. The program then runs the routine
that begins at line 170. That line sets the next position of the arrow figure
one line higher on the screen; if the figure has not already reached the top
of the screen, it is first erased {program line 180) and then drawn inits new
position (program line 190). In this case, control returns to the keyboard-
checking lines only after the figure reaches the top of the screen. Once the
arrow is launched, there is no stopping it—and no moving the launcher.

PROJECT 12-4

The program in Listing 12-4 lets you move the graphic horizontally,
vertically, and in directions that combine horizontal and vertical mo-
tion. The key controls in lines 120 through 127 are the central features
of this particular demonstration. Try it for yourself.

10 REM %% PROJECT 12-4

15 REM 2-DIMENSIONAL KEY CONTROL 0OMO
20 DEFSTR F

25 FO=CHR${128)IF1=CHR$(191)

100 REM %% CONTROL ROUTINE

105 CLS

110 CP=92711=01J=0

115 PRINT @ CPsF1s

120 IF PEER(14440)=8 THEN I=0!J=-11G0OT0 130
121 IF PEER( 14440)=16 THEN I=01J=11G0TO 130
122 IF PEER{ 14440 )=32 THEN I=-11J=01G60T0 130
123 IF FEER( 14440 )=40 THEN I=-11J=-11GOT0 130
124 IF PEER(14440)=48 THEN I=-13J=1:!G0T0 130
125 IF PEEK( 14440)=64 THEN I=11J=0:1G0OT0 130
126 IF PEER({14440)=72 THEN I=1!J=-11G0T0 130
127 IF PEER(14440)=80 THEN I=1:J=1160TQ 130
128 I=03J=0:G0OTO0 120

130 NP=CP+I+64%J

135 IF NF<=INTONP/64)%64 OR NPr=&3+INTONF/&4 Yké64 THEN 120
140 IF NP<=0 OR NP>=1022 THEN 120

145 FRINT @ CPyFO3

150 CP=NF

155 PRINT @ CFsF1$

160 GOTO 120

LISTING 12-4 Programming for Project 12-4



204 CHAPTER 12

It is possible to modify the program so that the launcher can be
moved while the arrow figure is rising, but that would call for some
multiplexing routines that would obscure the main points of this
demonstration.

Enter this program and give it a try. You should be able to situate
the graphic anywhere on the screen you choose. If you save the program
on tape or disk, you will save time when working with several other pro-
grams suggested in this chapter.

The key-control routines in lines 120 through 127 are responsible for
setting the horizontal and vertical motion vectors to values that reflect
the directions of the four arrow keys. If, for instance, you depress only the
up-arrow key, you want the graphic to move straight upward, but if you
depress the down-arrow key, the graphic should move downward. See
those two controls in program lines 120 and 121. The left- and right-arrow
keys are checked individually in lines 122 and 125.

We want to move the figure diagonally as well, and that means
checking for depressions of one of the horizontal and one of the vertical
keys. Line 123, for example, looks for data value 40—the sum of 8 and
32—up-arrow and left-arrow keys depressed simultaneously. If that condi-
tion is satisfied, the motion vectors are both set to negative values, caus-
ing the figure to move upward and toward the left.

Any PEEK(14440) value other than those listed in program lines 120
through 127 are considered invalid—holding down the left- and right-
arrow keys at the same time, for instance. Such invalid key conditions
allow the program to execute line 128, and that line stops the motion,
keeping it stopped until a valid key combination occurs.

After saving this program on tape or disk, see if you can alter it so
that the figure moves according to depressions of the U, D, L and R keys:
up, down, left, and right.

SENSING CONTACT BETWEEN FIGURES

While manual key controls can be used for altering the sequence of events
in a program, there should also be some automatic means for doing the
same thing. Contact sensing is the automatic counterpart of manual key
control.

Actually, most of the programs in the previous chapter and all of
them presented so far in this one use a very common kind of contact sens-
ing: sensing contact with the top, bottom, left, or right edges of the screen.
The techniques for sensing contact between two different figures use a
similar kind of thinking, but implementing the thinking is often much
more difficult.

There are two general philosophies regarding contact sensing. The



Keyboard Control and Contact Sensing 205

one used most often through this book is really a form of position sensing.
Sensing contact with the edges of the screen is a fine example of position
sensing: the contact is sensed by comparing of the next-position value of
the moving figure with some equations that represent the edges of the
screen. Constant comparison of the positions of two or more moving
figures can also result in sense contact between any of them—contact oc-
curs whenever any two figures have some position elements in common.
The figures need not be drawn in this case; sensing contact by comparing
of screen positions works equally well with drawn and “invisible” figures.

True figure contact sensing is not position-dependent. Before a
figure is moved to a new position on the screen, a short programming
routine searches the path immediately ahead of the figure. If that search-
ahead routine sees a clear path, the figure is allowed to move, but if the
routine does a PEEK-type operation and finds some relevant graphic in
the path ahead, it knows that a figure contact is about to occur. Unfor-
tunately, the search-ahead mechanism runs too slowly in BASIC to be of
much use under most circumstances.

single-point contact

The simplest kind of position-dependent contact-sensing situation
is one that calls for sensing contact between two single-graphic figures. If
the next-position value for one of the figures is exactly equal to the
current-position value for a second figure, contact has surely taken place.

PROJECT 12-5

Listing 12-5 demonstrates single-point contact between two one-
character figures. The ‘‘target” figure in this case is an asterisk
located near the middle of the screen. You can move a graphic 191
figure through two dimensions as described in an earlier project.
Whenever contact occurs, the target figure blinks on and off for a mo-
ment; then you are free to move the rectangle around and make con-
tact from a different position.

10 REM %% PROJECT 12-3

15 REM SINGLE~-FOINT CONTACT

20 DEFSTR F

25 FO=CHR$(128){F1=CHR${ 191 ) F2=CHR${ 42)
100 REM #% CONTROL ROUTINE

105 CLS

110 CP=9271I=01J=010F=479%

115 FRINT @ CPyF13!FRINT @ OF»F2

120 IF PEEK(14440)=8 THEN I=0:1J=-11G0OTO 130
121 IF PEEK(14440)=16 THEN I=03J=11G0T0 130
122 IF PEEK(14440)=32 THEN I=-1!1J=0160TO 130

{cont)



123 IF FPEER(14440)=40 THEMN I=-11J=-11GOTO 130
124 IF PEER( 14440 )=48 THEN I=-1!{J=1!G0T0 130
125 IF FEER(14440)=64 THEN I=11J=01G0T0 139
126 IF PEEK{14440)=72 THEN I=131J=-11G0OTO 130
127 IF PEEK( 14440)=80 THEN I=1:J=1:1G60TO0 139

128 I=01J=0:1GOT0 120

130 NP=CF+I+464%]

133 IF NPF<=INT(NP/64)%64 OR NPF:>=63+INT(NF/64 )ké64 THEN 120
140 IF NP<=0 OR NP>=1022 THEN 120

145 IF NP=0F THEN I=01.J=01GOSUE 200:60TC 120
150 PRINT @ CPsFO3

155 CP=NF

160 PRINT @ CFPyF1s5

165 GOTO 120

200 FOR N=1 TO 10

200 FRINT B OFsFO5

210 FOR T=0 TO 10INEXT T

215 PRINT @ OF.F2§

220 FOR T=0 TO 10INEXT T

225 NEXT W

230 RETURN

LISTING 12-5 Programming for Project 12-5

The key-control routines, program lines 120 through 128, can be
preloaded from cassette or disk if you have saved them as suggested in
Project 12-4. Of course, you will have to modify parts of that listing in
order to make it match Listing 12-5.

The contact-sensing routines are located in program lines 135
through 145. Line 135 looks for contact at the extreme vertical edges of
the screen, and line 140 senses contact with the horizontal edges. Both are
intended to keep the graphic 191 figure from running off the screen. There
is nothing new in those two lines.

Program line 145 represents the real objective of the project. That
line compares the next-position value of the moving figure, NP, with the
screen position of the stationary object, OP. Whenever those two figures
are equal, the moving figure has indeed made contact with the stationary
one. As a result, both motion vectors are set to zero in order to stop the
motion of the moving figure, the program goes to a subroutine that begins
at line 200 (to flash the stationary figure), then it returns the system to
line 120 to do the key-control routine again.

When both figures are represented by single characters, sensing con-
tact is a simple matter of comparing the next position of the moving figure
with the current position of the other. When they are equal, contact has
occurred. The idea works equally well when both figures are moving: just
compare the next-position value of one figure with the current-position
value of the other.

What if there are more than two figures, and the reaction of the pro-
gram depends on which two come into contact with one another? Suppose
you are trying to ‘‘shoot down’’ two different graphics—say, an asterisk



Keybpoard Lontrol and Gontact Sensing ZUr

and a graphic 149. Let’s say the scoring for the asterisk has to be different
from that of hitting the graphic 149. It's no real problem as long as the
program is keeping track of the position values for all three characters—
the missile and the two targets. Assuming the targets themselves are
separated, contact with either of them is sensed when the next-position
value of the moving missile is equal to the current-position value of one of
the targets, and the current-position value of the target that is hit is a
reliable indication of which target it is.

See if you can add a graphic 149 target to Listing 12-5. Work things
out so that contact with the asterisk makes the asterisk blink and contact
with the graphic 149 makes that blink.

horizontal-line contact

Sensing contact between a single graphic and a horizontal line of two
or more graphics is only a bit more complicated. It is a matter of compar-
ing the next-position value of the moving character with the current posi-
tion of the left- and right-hand ends of the horizontal graphic. If the next-
position value is greater than or equal to the position of the left end AND
less than or equal to the position of the right end, contact has taken place.

PROJECT 12-6

Modify the previous listing to look fike the one shown in Listing 12-6.
Upon running the program, you will see a horizontal line of 16
graphic-191s running across the middle of the screen. You will be able
to move a single 191 graphic around on the screen. Whenever it makes
contact with the long target, anywhere along its length, the target
figure will blink off and on for a moment. That blinking signals that the
program has indeed sensed a contact.

10 REM %% PROJECT 12-6

15 REH HORIZONTAL-LINE COMNTACT

20 DEFSTR F

25 FO=CHR$(128)F1=CHR${ 191)

26 F2=STRINGS( 16,191 )IF3=8TRINGS$( 16,128)

100 REM k% CONTROL ROUTINE

105 CLS

110 CR=9271I=01J=0i0P=47%

115 PRINT @ CPsyFL33IFRINT @ OFsF2

120 IF PEEK(14440)=8 THEN I=0{J=-1iGOTO 130
121 IF PEER(14440)=16 THEN I=01{J=1{60T0 130
122 IF PEEKC14440)=32 THEN I=-11J=0160T0 130
123 IF PEEKC14440)=40 THEM I=-1!J=-11G0T0 130
124 1IF PEER(14449)=48 THEN I=-11J=11G0T0 139
125 IF PEEK(14440)=64 THEN I=11J=0iG0T0 130
126 IF FEEK( 14440)=72 THEN I=1!1J=-11G0T0 13¢

{cont)



127 IF FEEK(14440)=80 THEN I=1!J=11G0T0 130

128 I=01J=0:G60TO 12¢

130 NF=CP+I+64%J

135 IF NP<=INT(NF/64)%64 OR NPE=GEHINTONF/64 k64 THEN 120
140 IF NP<=0 OR NP>=1022 THEN 120

145 IF NF&=0F AND NF<=0F+15 THEN I=01J=01GOSUR 206:G0TC 120
150 FRINT @ CFsFO3

155 CP=NF

160 FRINT @ CPsF15

165 GOTO 120

200 FOR N=1 TO 1¢

205 FRINT @ OF,F33

210 FOR T=0 T0O 10INEXT T

215 FRINT @ OF,F25

220 FOR T=0 TO 10INEXT T

225 NEXT N

230 RETURN

LISTING 12-6 Programming for Project 12-6

Program line 145 represents the contact-sensing routine. The ends of
the string-packed, horizontal target are located at screen positions OP
and OP+15. Contact has taken place whenever the NP value of the mov-
ing character falls within that range of screen positions.

It is possible to rewrite the program so that the horizontal target
figure moves, too. Line 145 need not be changed at all; all that has to be
done is to write a simple motion routine for string F2, then work out a
multiplexing scheme that would let the two figures move simultaneously
and independently.

vertical-line contact

Sensing contact between a vertical line of characters and a single
moving character is more complicated. It is easy to reckon a contact at the
extreme ends of the line, but sensing contact with the segments between
the two ends is a different situation.

A process of elimination is the most efficient way to approach the
problem. If the next-position value of the missile is less than the current-
position of the top of the target, contact is not being made. If the next-
position value of the missile is greater than the current-position value of
the bottom of the vertical target, contact is not being made. However, not
all of the screen-position numbers between those extremes are part of the
target figure. If the next-position value of the missile is greater than or
equal to the position of the top of the line, and it is less than or equal to the
bottom of the target line, that simply means the two figures are sharing
the same line—the same vertical region of the screen. Whether or not they
are actually in contact also depends on their horizontal positions. If both
the vertical and horizontal elements are the same, contact is being made.
Otherwise it is not.



PROJECT 12-7

Listing 12-7 draws a vertical target near the middle of the screen. Load
the program and run it. You will notice that the target blinks on and off
whenever you touch it with the key-controlled ‘‘missile.”

10 REM %% PROJECT 12-7

15 REM VERTICAL~LIME CONTACT

20 DEFSTR F

20 FOo=CHR${128)IF1=CHR%${ 191)

26 GOSUR 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 CP=92711=00J=010F=479

115 PRINT @ CPRsFLSIPRINT @ OF,F2

120 IF PEER(144490)=8 THEN I=0:{.J=-1:1G0T0O 130
121 IF PEER( 14440 )=16 THEN I=0!J=11G0T0Q 130
122 IF PEER(14440)=32 THEN I=-131J=01G0T0 130
123 IF PEER( 14440)=40 THEN I=-1:J=-11G0TOQ 130
124 IF PEER(14440)=48 THEN I=-131J=1!GOT0 130
125 IF PEER( 14440 )=64 THEN I=1:1J=0160T0 130
126 IF PEER(14440)=72 THEN I=1{J=-11GOTO 130
127 IF FEER(14440)=80 THEN I=1!J=11G0TQ 130
128 I=01J=016G0T0 120

130 NF=CF+I+64%]

135 IF NFZ=INT(NF/64 %64 OR NPr=63+INTINF/64 Yké64 THEN 120
140 IF NP<=0 OR NP>=1022 THEN 120

145 IF NF-INT(NP/64)K64<:0F-INT(OF/44 )k64 THEN 150
146 IF NP<OP OR NPXOP+64%3 THEN 150

147 I=41J=01GOSUE 200160T0 120

150 FRINT @ CFsFO5

155 CP=NF

160 PRINT @ CPsF13

165 GOTO 120

200 FOR N=1 TO 10

200 FRINT @ OP.F3;

210 FOR T=0 TO 10INEXT T

215 PRINT @ OF»F23

220 FOR T=0 TO 10INEXT 7

225 NEXT N

230 RETURN

4000 REM %% STRING-FACKING SUEBROUTINE

4005 F2=""{F3=""

4010 FOR N=1 TO 4

4015 F2=F2+CHR${ 191 M CHR$( 26 )+CHR$( 24
4020 F3=F3+CHRS( 128 )4CHR$( 26 4CHR$( 24)
4025 NEXT N

4030 RETURN

LISTING 12-7 Programming for Project 12-7

The contact-sensing operations take place in program lines 145, 146,
and 147. Line 145 compares the horizontal positions of the two figures. If
they arenot the same, they cannot be in contact with one another, and nor-
mal motion of the missile is called at line 150. However, if the horizontal
positions are identical, then it is time to check their vertical positions in
program line 146. If they do not share the same lines of screen positions,

209



210 CHAPTER 12

the missile is allowed to move. Whenever the program reaches line 147,
the process of elimination is complete, and by default the figures must be
in contact with one another. That line stops the motion of the moving
figure and causes the target to flash on and off for a moment.

rectangular-field contact

Figures to be used as targets are often made up of a rectangular field
of characters rather than just a single point or a straight line of them.
Sensing contact with a figure that is built within a rectangular field is a
matter of combining the techniques for sensing contacts with horizontal
and vertical lines of characters.

PROJECT 12-8

Try Listing 12-8 to draw a 16 x 4 rectangle near the middle of the
screen. That is the stationary target. The moving missile is controlled
from the keyboard, as in the three previous projects. Contact with any
part of the target (or, to be more exact, any segment of the outside
edge) causes the target to flash on and off several times.

10 REM *%¥ PROJECT 12-8

15 REM RECTANGULAR-FIELD CONTACT

20 CLEAR S121DEFS5TR F

25 FO=CHR$(128)IF1=CHR${ 171

26 GOSUE 4000

100 REM %% CONTROL ROUTINE

105 CLS

110 CP=92711=01J=010F=47%

115 FRINT @ CPsF13:PRINT € OFsF2

120 IF FEEK(14440)=8 THEN I=0!J=-131GOTO 13¢

121 IF PEEK( 14440)=16 THEN I=01J=1!G0T0 130

122 IF PEEK(14440)=32 THEN I=~-11J=01G0T0 130

123 IF PEEK( 14440 )=40 THEN I=-1{J=-11G0TO 130

124 IF PEEK( 14440)=48 THEN I=-11J=11G0T0 13¢

125 IF FEER(14440)=%4 THEM I=11J=01G0TO0 130

126 IF FEEK(14440)=72 THEN I=11J=-11G60T0 130

127 IF PEER( 14440 )=80 THEN I=11J=1160T0 130

128 I=0:J=01G0OT0 120

130 NF=CF+I+64%K]

135 IF NF<=INT(NF/64)%64 OR NFr=63+INT(NF/64)0k64 THEN 120
140 IF NP<=0 OR NP>=1022 THEN 120

145 IF INTONP/64)CINT(OFP/64) THEN 150

146 IF INTUNF/64)>INT(C(OF+64%3)/64) THEN 150

147 IF NFP-INT{NF/64)k64<0F-INT(OF/64)%k64 THEN 130
148 IF NP-INTO(NP/84)K64:0F+15~INT((OP+15)/64)k64 THEN 150
149 1=0$.J=01GOSUR 20036070 120

150 FRINT @ CPsFO3

155 CP=NF

160 PRINT @ CFPsF15

1565 GOTO 120



200 FOR N=1 TO 10

200 FRINT B OFyF35

210 FOR T=0 TO 10INEXT T

215 PRINT @ OPsF2;5

220 FOR T=0 TO 10INEXT T

225 NEXT N

230 RETURN

4000 REM ¥X STRING-PACKING SUBROUTINE

4005 F2=""iF3=""

4010 FOR N=1 710 4

4015 F2=F248TRING$( 165191 )+CHRE( 26 )+STRINGSH( 16524 )
4020 F3=F3+STRINGS( 165128 +CHRS( 26 )4STRINGS, 16,24
4025 NEXT N

4030 RETURN

LISTING 12-8 Programming for Project 12-8

The target sensing is carried out by program lines 145 through 149.
The scheme uses a process of elimination; as long as the conditions in lines
145 through 148 are met, the missile cannot be in contact with the target
figure. Only when all four of those conditions fail is the contact made. As a

resul  ~reaction in program line 149 occurs: the missile is stopped, the
targ flashed, and control is returned to program line 120.

ine 145 is true, the missile is above the target figure, or at least to
t¥ /of its upper-left corner. If line 146 is true, the missile is below or to

t sht of the lower-right corner of the target figure. If lines 145 and 146
fail, the missile is on the same screen lines as the target.
Ifline 147 is true, the missileis to the left of the target, and if line 148
crue, the missile is to the right. Those two conditions must fail before
line 149, the contact-response line, is executed.

contacts between multiple-character figures

The discussion thus far has dealt only with a single-character missile
making contact with a single- or multiple-character target. There are
many situations where the contacts to be sensed are between two or more
multiple-character figures. In such cases, general equations for sensing
contacts are too complex and slow in execution to be of any practical use.
Instead, such situations have to be handled on a case-by-case basis.

Matters are much simpler, for example, if two multiple-character
fields contact one another from the same direction at all times. That being
the case, there is no need to cover all possible contact situations, but just
those that are allowed to occur in the context of the animation sequence at
hand. The principles follow those just described for contacts between
single-character and multiple-character figures; it is a matter of making a
wise selection regarding which characters in the two fields will be sen-
sitive to one another.

211



summary of contact-sensing expressions

The following summary of logical expressions assume that one
figure is moving and the other is stationary. Variable NP(1) is the next-
position value of some critical character in the moving figure, and variable
CP(2) is the current-position value of the upper-left key character in the
stationary figure. Variables n and s represent the number of lines and
number of spaces per line in the stationary figure field.

Contact is being made if all four of the following conditions are met:

IF INT(NP(1)/64 <INT(CP(2)/64)

IF INT(NP(1)/64)> INT((CP(2) 64*(n—1)/64)

IF NP(1)—-INT(NP(1)/64)*64 < CP(2) - INT(CP(2)/64)* 64

IF NP(1)~INT(NP(1)/64)*84 > CP(2) +{s — 1) — INT((CP(2) + (s — 1))/64)* 64

The condition that one figure is moving and that the other is sta-
tionary is not as restrictive as it might sound at first. The overall effect
could be that both are moving, but as explained in an earlier chapter, a
single microprocessor cannot move more than one figure at a time. Get-
ting the effect of two or more moving figures calls for some multiplexing
techniques, by which one figure can be moving while the other must be
stationary.

AN EXAMPLE: A MISSILE SHOOT GAME

It's game-playing time, time to put together the ideas about keyboard
controls and contact sensing and combine them with some multiplexed,
moving-figure animation. It all adds up to a one-player arcade game of the
shoot-down variety.

PROJECT 12-9

Listing 12-9 is a simple MISSILE SHOOT game. Load it into your
system, double-check the listing, and run it.

10 REM %X PROJECT 12-9

15 REM MISSILE SHOGQT

20 LEFSTR F

25 GOSUR 4000

100 REM XX CONTROL ROUTINE

110 CLS

115 CP¢1)=9271CP(2)=CF(1)-6411=0
120 PRINT @ CP(1)sF13tPRINT @ CP(2)F2;
125 Pi=11p2=1

130 ON P1 GOSUR 500,575

135 IF HF=1 THEN P2=3



140
145
500
505
910
515
a0
525
G830
R
540
45
S50
555
a7a
580
583
590
595
600
6905
619
615
620
625
630
635

640
645
6590
6359
660
665
670
675
689
4000
4005
4010
4015
4020
4025
4030

ON P2 GOSUE 605,625,650
GOTO 130
REM LAUNCHER AND MISSILE ROUTINES
1=0
IF PEEK(14440)=1 THEN P1=2:RETURN
IF PEEK(14440)=32 THEN I=-1:G0OTO 525
IF PEEK( 14440 )=64 THEN I=1 ELSE F1=1:RETURN
NF(1)=CP¢ 141
IF NF(1)<=INTONF( 1.)/640k64 THEN 555
IF NPC1)5=63+INTCNPCL )/64)K64 THEN 555
PRINT @ CP(1)sF0;$PRINT @ CPC2)sF0}
CPU1)=NF(1)$CP(2)=CP( 1)-64
FRINT @ CP(1)sF1;iPRINT @ CP¢2)sF25
P1=1 tRETURN
NP(2)=CF(2)-64
IF NF(2)>=CP(3) AND NP(2)<=CP(3)+4 THEN HF=1!{GOTO 590
IF NP(2)>=0 THEN 595
PRINT @ CP(2)5F03 tCF(2)=CF(1)-64IFRINT @ CF(2)yF235iF1=1RETURN
PRINT @ CP(2)sF03 tCP(2)=NP{2)tFRINT @ CP(2)sF2;tF1=23RETURN
REM FLYING SAUCER ROUTINES
IC3)=RND( 3)-23IF I(3)=0 THEN 405
CP(3)=C RND( 7 )~1 )Kb4
IF I(3)<0 THEN CP(3)=CP(3)459
P2=2$RETURN
NP 3)=CP( 3)41¢3)
IF NPC3)<=INTONP(3)/64)%k64 THEN PRINT B CF(3)sF45iF2=13RETURN
IF NP(3)44>=63+INTCCNP( 3 )44 )/64)%64 THEN FRINT @ CF(3)sF4;i
F2=1$RETURN
PRINT @ CF(3)sF435CP(3)=NP(3)iPRINT @ CP(3)yF3;
P2=2 {RETURN
FOR N=1 T0 5
PRINT @ CP(3)sF3;5
FOR T=0 TO SINEXT T
PRINT @ CP(3),F43
FOR T=0 TO 10INEXT T
NEXT N
HF=0$P2=1 {RETURN
REM X% STRING-FACKING SUBROUTINE
FO=CHR$( 128)
F1=CHR$( 191)
F2=CHR$( 91)
F3=CHR$( 160 J+CHR$( 184 )+CHR$( 174 J4CHR$( 172 )4CHRS$C 176 )
F4=STRING$(5,128)
RETURN

LISTING 12-9 Missile Shoot game, Project 12-9

The two figures located near the bottom of the screen, an up-arrow

perched on top of a graphic 191, represent your missile and its launcher.
The figure moving to the left or right at a place higher on the screen is your
target—a little flying saucer invader.

You fire the missile, presumably at the flying saucer, by striking the

ENTER key. You can adjust the horizontal position of the launcher by
working the left- and right-arrow keys. That launch adjustment is possi-
ble only when the missile is still perched on top of it.

When the missile is launched, it rises toward the top of the screen.

One of two events can take place after that. Either the missile strikes the

213



214 CHAPTER 12

target, or it misses the target and rises all the way to the top of the screen.
In either case, the missile returns to the launcher. However, if it strikes
the target, the target figure blinks on and off to indicate a score.

The key control feature of the game is demonstrated by the ability to
adjust the horizontal position of the launcher and fire the missile. Contact
sensing is demonstrated in several ways: limiting the horizontal motion of
the launcher and flying saucer to the edges of the screen, limiting the rise
of the missile to the top of the screen, and detecting a hit between the
missile and flying saucer figures.

Since more than one figure can appear to be moving at the same time,
the routines must be multiplexed.

the string-packed figures

The launcher and missile are both single-character figures. If you
note the statements in the string-packing subroutine (program lines
4000-4030), you will see that the launcher is carried as string variable F1,
and the missile is represented by variable F2. They are both movable ob-
jects, so there is a one-character ‘‘erase’ variable, F0.

The flying saucer figure fits into a 1 x 5 frame; it is made up of one
line having five characters in it. Its string is packed as variable F'3, and its
“erase’’ string is a string of five successive 128s, F4.

The one-character launcher or missile is thus moved by printing F0
in the current position and then printing an F1 or F2 in the next position.
The flying saucer is moved by printing an F4 in the current position,
followed by printing an F3 in the next position.

the program variables
The most important variables in the program are defined this way:

FO: Printable string that erases the launcher and missile figures
F1: Printable string for the launcher figure

F2: Printable string for the missile figure

F3: Printable string for the flying saucer figure

F4: Printable string that erases the flying saucer figure

CP(1): Current-position value for the launcher

NP(1): Next-position value for the launcher

CP(2): Current-position value for the missile

NP(2): Next-position value for the missile

CP(3): Current-position value for the left key character in the flying
saucer figure



Keyboard Control and Contact Sensing 215

NP(3): Next-position value for the left key character in the flying
saucer figure

NP(3)+4: Next-position value for the right key character in the fly-
ing saucer figure

I: Horizontal motion vector for the launcher (—1 to move left and 1
to move right)

1(3): Horizontal motion vector for the flying saucer ( — 1 to move left
and 1 to move right)

HF: Hit flag (0 if target has not been hit, 1 if target has been hit)

P1: Multiplexing phase for the launcher and missile (1 or 2)

P2: Multiplexing phase for the flying saucer (1, 2, or 3)

N,T: Variables for timing the blinking effect that occurs whenever
the missile strikes the flying saucer

initializing the play

After the strings are defined and packed by lines 20 and 25, the game
is initialized in program lines 110 through 125. Line 110 clears the screen,
and line 115 sets the initial positions of the launcher and missile figures.
Note that the missile, variable CP(2), is set directly above the launcher
figure. That particular program line concludes by setting the launcher’s
motion vector, I, to zero—no motion.

Line 120 simply prints the launcher and missile figures in their initial
positions, and line 125 sets both operating phases of the multiplexing to
phase 1.

multiplexing phases for the launcher
and missile

Line 130 implies that there are just two multiplexing phases for the
launcher and missile. Phase 1 begins at program line 500, and phase 2
begins at line 575.

Phase 1 occupies lines 505 through 555, and the analysis of events
goes something like this:

Line 505: Set the motion vector to zero.

Line 510: If the ENTER key is depressed, initiate the missile-launch
phase, phase 2, and return.

Line 515: If the left-arrow key is depressed, set the launcher’s mo-
tion vector to —1 and jump down to the launcher/missile motion
routine at line 525.



216

CHAPTER 12

Line 520: If the right-arrow key is depressed, set the launcher’s mo-
tion vector to 1; otherwise, set up to repeat phase 1 and return.

Line 525: Set up the next-position value for the launcher figure.

Line 530: If the launcher is against the left edge of the screen, jump
to line 555—don’t move.

Line 535: If the launcher is against the right edge of the screen,
jump to line 555—don’t move.

Line 540: By default, the launcher/missile assembly must be free to
move. Erase both figures from their current positions.

Line 545: Set the new positions, keeping the missile located directly
over the launcher.

Line 550: Print the launcher and missile figures in their new posi-
tion.

Line 555: Set up to repeat phase 1 and return.

Phase 1 operations thus deal solely with the procedures for moving

the launcher/missile figures to the left or right on the screen. If the motion
is to take place, it covers just one space each time the phase is executed.

Phase 2 operations for the missile/launcher system is concerned with

moving the missile figure upward on the screen. That phase occupies pro-
gram lines 575 through 595, and they do these jobs:

Line 575: Set next upward position for the missile.

Line 580: If the missileis making contact with any portion of the fly-
ing saucer figure, set the HF variable to 1, and jump down to line
590.

Line 585: If the missile figure has not reached the top of the screen,
jump down to line 595 to move it.

Line 590: This line is executed if the missile strikes the flying saucer
figure or reaches the top of the screen. The statements clear the
missile figure from its current position, situates and redraws it
atop the launcher figure, and sets up the multiplexing for return-
ing to phase 1 operations.

Line 595: This line is executed if the missile is rising freely. It is a
basic character-move operation that concludes by setting up a re-
peat of these phase-2 operations.

The launcher and missile figures are really independent figures, but

they are multiplexed as though they are a single figure.



multiplexing phases
for the FLYING SAUCER

Line 140 in the program points to one of three possible multiplexing
phases for the flying saucer figure. Those phases begin at program lines
605, 625, and 650.

The phase 1 operations are responsible for setting a random altitude
and direction of motion for the saucer.

Line 605: Pick a random motion vector; —1 or 1.

Line 610: Pick a random line number; 0, 64, 128, 192, 256, 320, or
384.

Line 615: If the motion is to the left, move the initial position 59
spaces to the right—to the right side of the screen. (If the motionis
to the right, the initial position is now equal to the value picked in
line 610, a place at the left-hand side of the screen.)

Line 620: Set up phase 2 operations and return.

Phase 2 operations move the flying saucer figure across the screen:

Line 625: Set the next position for the flying saucer.
Line 630: Ifit hasreached theleft side of the screen, erase the figure,
set up phase 1 operations, and return.

Line 635: If the flying saucer has reached the right side of the
screen, erase the figure, set up phase 1 operations, and return.
Line 640: When the program reaches this line, the figure must be

free to move on the screen, so the instructions execute the move to
the next position.
Line 645: Set up to repeat phase 2, and return.

The phase 3 operations occupy program lines 650 through 680. They
simply cause the flying saucer figure to blink on and off at its current posi-
tion on the screen. When that blinking cycle is done, the last line clears the
hit-flag variable, HF, to zero, then sets up phase 1 operations.

Phase 3 of the flying saucer routines is run only when line 135 is
satisfied—when the missile has made contact with the flying saucer
figure.

217






Perspecrive

ANIMATION

One of the common-sense notions of visual perception is that things appear
to grow smaller and less distinct as they move into the distance, but larger
and more distinct as they move into the foreground. One can take advan-
tage of that notion to create the illusion of depth on the CRT, making use of
a technique commonly known as perspective drawing. What’s more, the
technique of perspective drawing can be extended to include animated
figures that appear to move away from or toward the foreground plane of
the CRT screen. That is the subject of this chapter.

Perspective animation can add a great deal of meaning and visual in-
terest to an animation sequence that otherwise appears primitive and flat.
Being able to zoom figures in and out of an imaginary point in the
distance—the vanishing point—literally adds a new dimension to anima-
tion sequences.

A perspective animation sequence is a special sort of animation se-
quence that is implemented by plotting a carefully designed sequence of
image frames on the screen. The design of those frames, and the planning of



220 CHAPTER 13

their placement, sets perspective animation apart from the other anima-
tion sequences.

Here are a few special principles that must be borne in mind while you
are planning a perspective animation sequence:

1. Objects appear to grow smaller as they move from the foreground
toward the vanishing point, but larger as they move from the van-
ishing point toward the foreground.

2. Objects seem to grow less distinct in appearance as they move
toward the vanishing point, but more distinct as they move toward
the foreground.

3. Objects appear to shrink at a slower rate as they move toward the
vanishing point, but grow at a faster rate as they approach the fore-
ground.

4. The larger the number of frames incorporated in the sequence, the
smoother the animation appears.

5. The faster the animation frames are sequenced, the faster the
figure appears to move toward or from the vanishing point.

Those seem to be simple, common-sense principles. But their prac-
tical implementation calls for a lot of work and, quite often, some rather
distasteful compromises.

It isn’t difficult to plan the image frames in order to make the object
appear to grow smaller or larger as it zooms toward or away from the
vanishing point. The frames are simply designed so that the figure appears
successively smaller or larger.

The matter of making the figure in successive frames appear less
distinct as it approaches the vanishing point is automatically handled by
the inherent nature of the TRS-80 graphics system. The fixed size of the
graphics elements on the screen actually makes it impossible to put alot of
detail into small figures. Large figures, on the other hand, cover a broader
area of the screen and can take advantage of the larger number of graphic
elements available. Actually, you will probably find that there aren’t
enough graphic elements available for the medium-distance animation
frames; there will be more than the desired amount of spatial distortion.
That’s one of those compromises we must learn to live with or find some
clever way to overcome.

Making figures seem to shrink more slowly as they recede toward the
vanishing point is an effect that beginners sometimes overlook. Setting
up a perspective animation sequence that shows the figure shrinking the
same amount in each frame actually creates the illusion that it moves
faster as it goes into the distance. Creating the appearance of constant-
speed motion calls for adjusting the size of the figure at different rates.



Perspective Animation 221

Generally, therefore, there will be more animation frames devoted to the
figure when it is away from the foreground.

Certainly any animation sequence appears smoother as the number

~of frames devoted to it increases. However, there is a practical limit to the
number of frames we all choose to draw, encode, and write into the com-
puter program. It is thus necessary to trade off a smooth animation effect
against the amount of time and work we care to put into the sequence. We
are going to take a very practical approach to the situation: try a few
frames, and if the animation appears too jerky, add a few more.

The rate at which the frames are sequenced can be traded off against
the number of frames in the perspective animation. In any case, the ap-
parent rate of motion to or from the vanishing point is dictated by the fre-
quency of plotting—and that brings up the problem of computer drawing
speed. The faster the frames can be plotted, the faster the figure can ap-
pear to move (and the smoother the animation will be). To this particular
end, every animation frame will be designed so that it fits into a single
string variable; furthermore, the frames will be planned so that they plot
the new figure and erase elements of the previous figure at the same time.

All' of these ideas can be incorporated in a special procedure for
developing perspective animation sequences.

Here are the steps in that procedure:

1. Make a preliminary perspective drawing of the sequence on a
video worksheet, showing simple rectangles where the figures are
to be plotted.

2. Separate the rectangles into individual frames (on a different
video worksheet), showing the area to be plotted and the areas to
be erased. )

3. Use the drawings of individual frames to determine the graphics
codes, and use the preliminary perspective drawing to determine
the screen position for each frame.

4. Write the frames into a BASIC program and run the program to
check the accuracy of the work and the smoothness of the anima-
tion.

5. Make any necessary adjustments in the work thus far, then draw
the desired figure into the rectangles, the area originally plotted
as image planes.

6. Adjust the graphics-code listing to accommodate the figure.

This is a six-step procedure that can get a bit tedious at times, but if
it is followed conscientiously, it promises a working perspective anima-
tion sequence. A haphazard approach guarantees confusion, frustration,
and wasted work. Do it “‘by the numbers,”” and things will work out a lot
better in the long run.



NEAR-CENTER PERSPECTIVE ANIMATION

The procedure for generating a satisfactory perspective animation se-
quence is illustrated here with one of the simplest kinds of sequences:
making an object appear to zoom straight in or out of the screen.

Fig. 13-1 represents the preliminary perspective drawing for this se-
quence. There are six image planes labeled P1 through P6. P1 represents
the frontmost drawing plane, P2 represents the same plane as it is moved
back a bit toward the vanishing point, P3 represents the next one back,
and so on. Plane P6 marks the vanishing point of the sequence. If these
planes are drawn in rapid sequence, beginning with P1, the viewer will get
the impression of a square figure moving back into the distance. If the
planes are sequenced in the reverse order, P6 to P1, the visual impression
is that of a square moving from the vanishing point toward the
foreground.

Notice that there is an attempt to make the sizes of the image planes
decrease at a slower rate as they approach the vanishing point. Plane P2,
for instance, is two character spaces smaller all around than plane P1 is,
whereas plane P3 is just one ‘‘square’’ smaller than P2. Ideally, plane P4
would be V2 “square’’ smaller than P3, but that cannot be done with this
graphics system. This is another one of those compromises we have to
tolerate in order to achieve anything at all.

Along that same line of thinking, notice that the plane at the
vanishing point, plane P8, is not centered within the other squares. That’s
another one of the compromises: it simply cannot be done within the for-
mat imposed by the TRS-80 graphics system. So that small plane has to
be situated a bit off center.

In this particular case, the number of planes that can be used is dic-
tated by the size of the largest one. It would be difficult to use more image
planes and yet have each one a bit smaller than the preceding one.

1 P8

o

N O

FIGURE 13-1 Preliminary perspec-
tive drawing of six im-
age planes for an on-
center perspective
animation

I v meliuoinolmal BN




Perspective Animation 223

That is the preliminary perspective drawing. The image planes could
have a rectangular shape; the relative dimensions of the planes are deter-
mined by the nature of the figure that will eventually be drawn on them.
In this case, the figure will have a rather squarish shape.

The second step in the procedure is to develop a frame for each im-
age plane, designing them so that they both plot the image plane as white
and erase any vestiges of a previously drawn plane. That is done for you in
Fig. 13-2.

Those frames show the drawing planes individually, along with the
surrounding areas that have to be erased. Plane P1, for instance, is shown
as Frame F(1). Here there is no need to erase portions of a larger,
preceding frame because there is none preceding it.

Frame F(2) draws plane P2, but also has an erasing border that
deletes segments of Frame F(1). Likewise, Frame F(3) draws image plane

e

Pl

FIGURE 13-2 The six frames required for plotting the image planes and
erasing segments of larger ones



224 CHAPTER 13

F3 and erases unwanted segments of Frame F(2). The same idea follows all
the way down to Frame F(6).

Also notice that the frames are planned such that it makes no dif-
ference whether the planes are sequenced from P1 down to P6 or from P6
up to P1. Consider Frame F(3), for example. If the perspective animation
calls for moving the frames into the distance, Franmie F(2) will precede F(3);
and F(2) has the drawing and erasing elements necessary for wiping out
any part of F(2) that might otherwise remain on the screen. If the sequence
calls for making the planes appear to be moving outward from the
vanishing point, Frame F(4) will precede F(3). Still, the plotting and eras-
ing areas of F(3) are adequate for clearing away any part of Frame F(4).

In short, every frame in a perspective animation sequence ought to
be designed in such a way that it can clear out portions of a frame that
precedes it from either direction.

Figure 13-3 shows two additional frames, F(0) and F(7). The purpose
of these frames is to erase the first and last drawing planes in the se-
quence. Whenever the planes are to be moved toward the vanishing point,
for example, one should get the visual impression that the figure finally
vanishes into the distance. Doing that is a simple matter of erasing plane
P6 at the end of the sequence, and Frame F(7) fulfills that requirement.

By the same token, it is sometimes desirable to erase plane P1 as it
appears in F(1). One might do that when the planes are being moved out
from the vanishing point and reach the foreground before disappearing
from the screen. The erase-only frame, F(0), does that job.

That completes the second major step in the procedure for develop-
ing a perspective animation sequence. Bear in mind that some meaningful
graphic figures will eventually be drawn into the plotting areas of the
frames. For now, we are just setting things up.

The next step is one of the simpler ones: coming up with the

;s

FIGURE 13-3 Two additional
“erase-only” frames
required for the on-
center perspective
animation se-
quences




Perspective Animation 225

character codes for each of the frames. With the frame drawings used as
guides, a line-by-line listing of the drawing codes look like those in Table
13-1.

Some of the codes, you will notice, are underlined. Those represent
plotting areas for the image planes; they are the places where we will even-
tually substitute graphics codes for drawing a particular image. The codes
that are not underlined must never be changed; they represent the erasing
areas and control codes for packing the entire frame into a single, fast-
printing string variable.

The scheme isn’t ready for running on the computer yet. It is first
necessary to determine the screen position for the upper-left key point in
each frame, and that’s a task that calls for some clear-headed thinking.

Suppose you want to key Frame F(1) to screen position 0. That will
plot it so that its upper-left key point is in the upper left-hand corner of the

TABLE 13-1

CHARACTER AND CONTROL DATA FOR THE PERSPECTIVE
ANIMATION FRAMES IN FIG. 13-2

-—- FRAME O --

2044269 ~12+24
204226512924
204526912524
20451
-~ FRAME 1 ~-
~125191926y-12+24
=121%1926,~12y24
~12y191v26s-12+24
Sy194s1
-- FRAME 2 -~
1945-85 1765194269 12524
194y~-8+1917194s 261224
1945-8y 19119426y ~12524
174y-8y 13119441
“TTUVRAME 3 -
200y26y-8524
193y ~69171 919326, 8524
193+-65 191 s 19342558524
200
-~ FRAME 4 -~
193y-45,188,193+261 4224
193, -4y 143519351
~~ FRAME § -~
1939251765 1932269 4424
193,727 13171931
-= FRAME & —-—
160144524y -2424
¥
~- FRAME 7 -
19441




226 CHAPTER 13

screen. That’s easy. Where should you set the key point for Frame F(2)?
To answer that question, you must compare the perspective drawing in
Fig. 13-1 with the frame drawings in Fig. 13-2. Doing that, you will see
that the upper-left key point for F(2) is identical in position to that of F(1).

That wasn’t too bad. What about Frame F(3)? That’s a different
story. Frame F(3) has the same height as the previous two frames, but it’s
narrower. It begins at a printing location that is two spaces to the right of
F(2). Thus the printing position of Frame F(3} is 2.

Frame F(4) is both narrower and shorter than F(3). Relative to F(3),
Frame F(4) begins one space to the right and one line lower. That means
the printing position for F(4) is equal to that of F(3) plus 1 plus 64. Putting
the information all together, that means Frame F(4) is plotted at position
67.

Applying the same line of thinking a couple of more times, it turns
out that F(5) should be printed at position 68, and F(6) should be at posi-
tion 69. Using the same ideas for the erase-only frames, F(0) is at zero, and
F(7) is at position 69.

It is not a difficult idea, but it is one that demands your full concen-
tration. One little miscalculation anywhere along the way can mess up the
placement of all the remaining frames.

At this point, you are ready to type the information into the com-
puter and give it a try.

PROJECT 13-1

Use the frames just developed to show a sequence of square image
planes zooming into the vanishing point. See the suggested program in
Listing 13-1.

10 REM ¥k PROJECT 13-1
15 REM PERSPECTIVE ANIMATION DEMO #1
20 CLEAR 102431DEFSTR FsF

30 GOSUB 4000

100 REM %K CONTROL ROUTINE

105 CLS

110 FOR N=1 TO 7

115 H=3AN+1:D=VALCMIDSCFrM,3))

120 PRINT @ DH0sF(N);

125 FOR T=0 TO S0INEXT T

130 NEXT N

135 GOTO 110

4000 REM ** STRING-FACKING SUEROUTINE
4005 FOR N=0 TO 7

4010 GOSUE 4500

4015 FON)=F

4020 NEXT N

4025 p=v

4030 FOR N=1 TO BIREAD FiP=F+FINEXT N
4495 RETURN

4500 F=""



4505 REAI A

4510 IF A=0 OR A=1 THEN RETURN
4515 IF Ax1 THEN F=F+CHR${A)IGOTO 4505
4520 READ BIF=F+STRINGS(ABS(A)yRIIGOTO 4505
5000 REM %% CHARACTER LISTINGS
5001 DATA 204,265-12+24

5002 DATA 204426912424

5003 DATA 204526,-12+24

5004 DATA 204,1

5010 REM -~ FRAME 1 -—

5011 DATA ~12,191+26+-12,24

5012 DATA -12,191+26»-12,24

5013 DATA -12y191+26y~12+24

5014 DATA -12+191,1

5020 REM -- FRAME 2 -~

5023 DATA 194,-8+1761194+265-12524
5022 DATA 194y~8s1915194,265-12y24
5023 DATA 194,-8s191»194+s265-12+24
5024 DATA 194,-85131,19451

5030 REM -~ FRAME 3 -~

5031 DATA 200,269-8524

5032 DATA 193+-651919193+26+~8y24
5033 DATA 1935-651915193+265~8424
5034 DATA 200+1

5040 REM ~= FRAME 4 -~

5041 DATA 193,-4+188,193+2465-6224
5042 DATA 193,-451435193+1

5050 REM -~ FRAME 5 ~-—

5091 DATA 193y-2917651939269-4+24
5052 DATA 193,-2+1315193,1

5060 REM -~ FRAME & ~-—

5061 DATA 160,1445265-2424

5062 DATA 1941

5070 REM ~~ FRAME 7 ~--

5071 DATA 19441

6000 REM X% DISPLACEMENT DATA %X
46001 DATA 0004000+00050025,067+0681069+069

LISTING 13-1 Program for demonstrating the perspective animation se-
quence developed from Figs. 13-1 and 13-2; see Project
13-1

The program listing appears much like any other kind of animation
program. The seven different frames are packed into strings F(0) through
F(7), following the nomenclature already established during the pre-
liminary work. The displacement data—the PRINT @ values for each
frame—are offered here in a different form, however. Notice in program
line 6001 how the eight different PRINT @ values are designated in se-
quence, using three-digit numerals. Recall that the frames are to be
printed at 0,0,0,2,67,68,69, and 69 respectively. Those displacement
values are entered at program line 6001 as three-digit figures and packed
into a single string, P, at program line 4030. The displacement values are
then pulled out of that string by line 115 in the control routine. It is the
nature of that program line that makes it necessary to specify the dis-
placement values in line 6001 as three-digit numerals.

227



228 CHAPTER 13

The control routine is quite simple. The FOR ... NEXT loop be-
tween lines 110 and 130 cycle through the frames one at a time, beginning
with frame F(1) and ending with frame F(7). That creates the impression of
the square zooming into the distance. Line 135 merely makes the entire
zoom begin all over again.

During that seven-frame sequence, program line 115 fetches the
designated key point for the current frame and line 120 prints it on the
screen.

Do you want to change the speed of motion? Alter the value of the
timing constant in program line 125.

Do you want to change the screen position of the animation?
Substitute some other PRINT @ value for the zero in program line 120.

Do you want to make the square zoom out from the vanishing point?
Change program line 110 to read:

110 FOR N=6 TO 0 STEP -1

Indeed, there is a great deal of flexibility built into this animation
scheme.

The purpose of entering and running the program at this point is
merely to test the configuration of the frames and their respective
displacement values. If there are any errors in the design thus far, they
generally show up as bits and pieces of the image planes being scattered or
left on the screen when and where they should not be. Whenever that hap-
pens, it is time to take a calm, careful look at the data generated thus far.

Assuming the program runs as you expect it should, the next step is
to draw the desired figure into the available image planes.

Fig. 13-4 shows the frames with a house figure drawn into them.
Frame F(6) isn’t shown here because it is too small to have any significant
part of the house figure drawn into it; it will be left unchanged from the
earlier programming.

This is perhaps the most creative part of the job. The earlier work is
highly technical; this demands an artist’s eye if you hope to carry out the
animation successfully. The main problem is to draw the figure into the
smaller framing areas in such a way that it resembles the larger versions.

Work out the graphics codes for your final figures, then insert them
into the program where the white squares were originally defined; insert
them where the underlined characters appear in Table 13-1.

Getting that figure data into the program’s DATA listing is the final
step. Run the program to check the overall visual impression, and make
any necessary changes. At this point in the procedure, the only changes
should concern the appearance of the figure. Don’t tamper with the fram-
ing sizes or displacement values now; things might get so far out of hand
that it would be better to start all over from the beginning.



FIGURE 13-4 A house figure fit into the image planes and frames for the

on-center perspective animation

PROJECT 13-2

Mo

dify the program in Listing 13-1 to show the house figure receding

into the distance. See Listing 13-2.

10 R
15 R
20 C
30 G
100
105
110
115
120
125
130
135
4000
40905
40190
4015
4020
4025
4030
44935
4500
4505
4510
4515
4520
50990

EM k¥ FPROJECT 13-2

EM FERSFECTIVE ANIMATION HOUSE
LEAR 1024I0EFSTR FsF

OSUE 4000

REM %% CONTROL ROUTINE

CLS

FOR N=1 TQ 7

M=3kN+1 ID=VAL(HIDS(FPsMr3))
FRINT @ D+0sF(N);
FOR T=0 TO 25INEXT T
NEXT N
GOTO 110
REM XX STRING-FACKING SUBROUTINE
FOR N=0 TO 7
GOSUR 4500
FENDI=F
NEXT N
F:: H N
FOR N=1 T0O 8IREADI FIF=P+FINEXT N
RETURN
F:ll 1
READ A
IF A=0 OR A=1 THEN RETURN
IF A>1 THEN F=F+CHR$(A)XIGOTO 45035
READ BIF=F+STRING$(ABS(A)syR)IGOTO 4500
REM X¥ CHARACTER LISTINGS

{cont.)

229



5001
5002
5003
5004
5010
5011
5012
5013
5014
5020
S021
5022
5023
5024
5030
5031
5032
5033
5034
5040
5041
5042
S5050
8051
5052
5060
5061
5062
5070
5071
6000
6001

DATA
DATA
DATa
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
REM

DATA
IATA
DATA
DATA
REM

DATA
DATA
REM

DATA
BATA
REM

DATA
DATA
REM

DATA

204926912524
204926512424
204526y -12924
2041

-~ FRAME 1 --
204926512224
195+17691885190:189,188517621959265~124+24
1945131925191 9~251799y~2519191315174+26,~12+24
19355191 ¢17951515171517951915179:191,193»1

- FRAME 2 -~
19452005194,265~12524
1945193,16051845190,1875180+144y19351945269-12524
19491949159 5157 917451752 15621485194+5269~12524
19451949131912951305-25131,129519491

-~ FRANE 3 --
200926y —-8+24
193+1935160+18451805144,193,193,26,-8524
193,1935171+1899174,187,148,193526y-8524
20041

-- FRAME 4 -—
193519351607144,193+193+267~6+24
19351935143,13951325193+1

~-- FRAME & ——
1932251765193 269-4924
193,-25131+19351

-~ FRAME 6 —-—
16051445269 -2124
19441

~— FRAME 7 -~
19441

REM ¥¥x DISPLACEMENT DATA XX

naTA

0005000000500 250467506820692069

LISTING 13-2 Programming for the perspective-animated house figure

suggested in Project 13-2

The next series of comments concern the same general project, but
offsetting the perspective slightly. See the preliminary perspective draw-
ing in Fig. 13-5 and the corresponding image-plane frames in Fig. 13-6.

Up to this point we have gone through the first major phase of the

FIGURE 13-5 Preliminary perspec-

P5 : tive drawing for a

< p : near-center perspec-
! tive animation se-

quence



Py

d , 1S )

FIGURE 13-6 Animation frames for the perspective planes in Fig. 13-5;
the erase-only frames for erasing planes P1 and P6 are not
shown, but they are included in the programming for the se-
guence

PROJECT 13-3

Use the frame data and displacement information available from Figs.
13-5 and 13-6 to write a BASIC program that shows the offset
perspective planes zooming out from the vanishing point. See Table
13-2 and Listing 13-3.

10 REM %% PROJECT 13-3

15 REM FERSFECTIVE ANIMATION DEMO #2
20 CLEAR 1024:!DEFSTR FsF

30 GOSUR 4000

100 REM X% CONTROL ROUTINE

105 CLS

110 FOR N=1 TO 7

115 M=3%kN+1D=VALIMIDS(FyM»3))

120 PRINT @ D40,F(N)3

123 FOR T=0 TO 23INEXT T

130 NEXT N

135 GOTO 110

4000 REM X% STRING-FACKING SUEROUTINE

(cont.)

231



4005 FOR N=0 TO 7

4010 GOSUE 4500

4015 F(N)=F

4020 NEXT N

4025 p=vn

4030 FOR N=1 TO 8IREAD FiP=F+FINEXT N
4495 RETURN

4500 F=""

4505 READ A

4510 IF A=0 OR A=1 THEN RETURN
4515 IF A>1 THEN F=F+CHR$(A):GOTO 4505
4520 READ BIF=F4+STRING$(ABS(A),E)IGOTD 4505
5000 REM ¥ CHARACTER LISTINGS
5001 DATA 204,26,-12,24

5002 DATA 204,26,-12,24

5003 DATA 204,26,-12,24

5004 DATA 20451

5010 REM -~ FRAME 1 --
5011 DATA ~12,191,26,-12,24
5012 DATA -12,191,265~12,24
5013 DATA -12,191526,-12,24
5014 DATA -125191,1

5020 REM -~ FRANE 2 --
5021 DATA 204,265-12,24

5022 DATA 196,-8s191526,-12,24
5023 DATA 196,-8s191526,-12,24
5024 DATA 1965-8,191,1

5030 REM -~ FRANE 3 ~-
5031 DATA 2005265824

5032 DATA 1945-6,191,26y-8524
5033 DATA 194,-6s191,1

5049 KEM -~ FRAME 4 --
5041 DATA 194,-45176526s-624
5042 DATA 194s-4,191,1

5050 REM -~ FRAME 5 --
5051 DATA 197:265-5,24

5052 DATA 195,-2,188y1

5060 REM — FRAME &6 --
5061 DATA 193s17691
5070 REM ~— FRAME 7 ~-

5071 DATA 19351
6000 REM *% DISFLACEMENT DATA XX
6001 DATA 0005,000-00050685134,135,202,203

LISTING 13-3 Program for demonstrating the perspective animation se-
quence developed from Figs. 13-5 and 13-6; see Project
13-3

perspective animation development procedure a second time. Once the
program in Listing 13-3 is run and debugged, the house images can be fit
into the frames and the corresponding data worked into the program.

OFF-CENTER PERSPECTIVE ANIMATION

Fig. 13-7 shows a full-screen perspective drawing of six image planes. The
first, the foreground plane, is drawn near the lower left-hand corner of the
screen; when the planes are plotted in numerical sequence, they create



TABLE 13-2

CHARACTER AND CONTROL DATA FOR THE PERSPECTIVE
ANIMATION FRAMES IN FIG. 13-6

-- FRAME O --

204026y ~12524
204,264 12524
204926y -12524
2041

-~ FRAME 1 -
-12s191 26912224
~12v191 926912524
~125191+265-12+24
-12y191s1

-~ FRAME 2 -~
2045265 -12+24
1969~82191,246y~12+24
196y-8y1921s26,~12+24
196+-85191 1

-~ FRAME 3 -
2002 265-8+24
194y -691212265-8224
194,=85191s1

= TRAME 4 —-
1949y-45178s265~65 24
19444319151

T~ FRAME % -~
197 26+ ~35924
195, -2,188y1

- FRAME & ~-
193917691

~ FRAME 7 ~—
19351

PROJECT 13-4

Complete this revised near-center zooming animation by fitting the
house images into the previous program. See Listing 13-4.

10 REM %% PROJECT 13-4

15 REM FERSPECTIVE HOUSE #2
20 CLEAR 1024!DEFSTR FiyF

30 GOSUR 4000

100 REM X% CONTROL ROUTINE

105 CLS

110 FOR N=6 TO ¢ STEF -1

115 M=3%N+1iD=VALIMIL$(FsMs3))

120 PRINT @ DH0SF(N)}

128 FOR T=0 TO 25INEXT T

130 NEXT N

133 GOTO 110

4000 REM X¥ STRING-FACKING SUBROUTINE
4005 FOR N=0 TO 7

{cont)

233



4010
4015
4020
4023
4030
4495
4500
4505
4519
4515
4520
5000
5001
5002
5003
5004
5010
5011
5012
5013
5014
5020
5021
5022
5023
5024
5030
5031
5032
5033
5040
5041
5042
5050
50351
5052
5060
5061
5070
5071
6000
6001

GOSUB 43500

FIN)=

NEXT

Fraz s nt

F
N

FOR N=1 TO BIREAD FIP=F+FINEXT N
RETURN

Fant®
READ

IF A=
IF A

READ

A
0 OR A=1 THEN RETURN

-1 THEN F=F+CHR$(A)IGOTO 45035

BIF=F+STRING${ ABS{ A )y RIICOTO 4505

REM X¥x CHARACTER LISTINGS

IATA
DATA
IATA
LATA
REM

DATA
IATA
navTa
IATA
REM

DATA
DATA
LATA
LIATA
REM

DATA
OATA
DATA
REM

DATA
DATA
REM

IATA
[ATA
REM

DATA
REM

natTa

204526512524
2042465 -12:24
204,265 -12524
20441
-~ FRAME 1 --—
2044269-12+24
195917651885 1705189518851762195+26y-12424
1949131925191 s-251795-25191131y174y265-12+24
1935194217915 517451799191 0179519151935 1
-~ FRAME 2 --
2049269~12524
19691935160918451905189+180514451935269~12024
19621945 1595157 5174417591565 1489269 ~12+524
19651945131512921305-2,13191291
~-- FRAME 3 ~--
2009269-8524
1945193+160,184,180514451735265~8524
194,1935171,189,174,5187 14851
- FRAME 4 --
194+193916051445193y269~61+24
194+193+1435,139,132+1
-- FRAME S -~
1974126535524
195y-25188+1
~-—~ FRAME &6 -~
193517691
-— FRAME 7 --
19351

REM ¥%x DISPLACEMENT DATA XX

DATA

000+0005,0005,068y134,135,202,203

LISTING 13-4 Programming for the animated-house sequence suggested

the impression of zooming toward a vanishing point situated a bit above
the center of the screen. This is an example of an off-center perspective

in Project 13-4

animation sequence.

The six major plotting frames for this sort of perspective animation
are somewhat more difficult to design than they are for on- or near-center
perspectives, especially when they have to be designed so that the motion
can be runin either direction. Fig. 13-8 shows those main plotting frames.
Indeed, they have some unusual, or irregular, shapes, but using those
strange shapes for the plotting and erasing effects allows somewhat

shorter drawing times than using full rectangles would.

Notice how each frame is planned so that it plots its image plane and

NN a



FIGURE 13-7 Preliminary perspective drawing of six planes for an off-
center perspective animation sequence; points DO through
D6 are screen locations for frames that are developed in the
next step of the procedure

erases vestiges of the plane that might be plotted ahead or behind it in the
animation sequence. Frame F(2), for instance, plots the image plane for P2
and erases segments of planes P1 and P3.

Of course the framing sequence should also include a frame F(0) for
erasing P1 and a frame F(7) for erasing P6. Those two erase-only frames
are not shown here, but they will be included in the DATA listings.

The displacement values—the key plotting points for each
frame--are shown on both figures.

Table 13-3 shows the character data and control codes for
generating the eight frames in this perspective animation sequence. The

235



D
! 7
12
SKIE Anil
1 e 7
: 3 SKi
&
I 5
-6
&
Fi 3 16
]
D3
1
7 7
=
1 ;
. P32
i 7
SR F(4
(3)
FIGURE 13-8 Image frames for the off-center animation sequence

specified in Fig. 13-7; The points D1 through D6 indicate the
upper-left key points for drawing the frames on the CRT



TABLE 13-3

CHARACTER AND CONTROL DATA FOR THE PERSPECTIVE
ANIMATION FRAMES IN FIG. 13-8

-- FRAME O —-

208426y -16y 24
208s28y~16v24
208928516924
208926916424
200426y -1624
20851

- FRAME ]

~11s25,203926 -

=1y ]
~16919
=16y ]

JJ&V";H)yl?ivi4?y195v &
203y-104191 21499289~
208y -105171s 145026y -
20826016224
208s24, 16y 24
20841

- FRAME 3 -~
~142355196526s~11524
~75183s 196y 28y-18s24
To0 7 =7 s 191526y ~145 24
199:-75191s269-14+24
20326, -11:24
20341

e FRAME 4
<7928 -3y 1765144 193,289 ~12524

19953y y 149906 -11y24
1999269 -7924
19941

wwe FRAME & o
19521685188y 194924y -7 24
19641

~- FRAME 6 -~
19541291

~- FRAME 7 —-
19341

237



underlined data indicate those places that can carry more meaningful
figure data when it is time to fit a figure into the planes.

PROJECT 13-5

Write a BASIC program thatimplements the perspective animation just
described. Show the image planes zooming out from the vanishing
point. See the suggested programming in Listing 13-5.

10 REM %% PROJECT 13-5

15 REM FERSFECTIVE ANIMATION DEMO #3
20 CLEAR 10241DEFSTR FsF

30 GOSUR 4000

100 REM Xx CONTROL ROUTINE

108 CLS

110 FOR N=6 7O 0 STEF -1

115 M=3kN+1iD0=VAL(MINS(FyMs3))

120 FRINY @ DH0-F(N)}

125 FOR T=0 TO SINEXT T

130 NEXT N

135 GOTO 110

4900 REM XX STRING-PACKING SUERCUTINE
4003 FOR N=0 T0O 7

4010 GOSUER 4300

4015 FIN)=F

4020 NEXT N

4025 p="

4030 FOR N={ TO 8iREAD FIF=F+FINEXT N
4495 RETURN

4300 F=u"

4505 READ A

4310 IF A=0 OR A=1 THEN RETURN

4515 IF Axl THEN F=F+CHR$(A)IGOTO 4505
4520 READ BIF=F+S5TRINGS{ ABS(A)yB)IIGOTO 4505
5000 REM %% CHARACTER LISTINGS

5001 DATA 208526516524

5002 DATA 208,26y-16524

5003 DATA 208+267-16524

5004 DATA 208,265 -16524

5005 DATA 208:265~16-24

35006 [ATA 208.1

9010 REM -~ FRAME 1 -~

5011 DATA -11,25,203,269-22524

3012 DATA ~1651915198+264+-22,24

G013 DATA -16s191:198526,-22,2

3014 DATA -16y191,198:26,5~22,24

5015 DATA -162191,265-16,24

U016 DATA ~165191s265-164524

5017 DATA ~16519151

5020 REM -- FRAME 2 --

G021 DATA ~18525,1999269-14,24

5022 DATA -10519151472195:265~25,24
5023 DATA 203,~10,191,1492195,265-25,24
5024 DATA 203,-10,1915149:26,-22,24
G025 DATA 2035-10,1915149526,-22,24
3026 DATA 208,265-16524

5027 DATA 208,265~16524



5028 DATA 208.1

5030 REM ~- FRAME 3 --

G031 DATA ~14,25,196926,~11,24
D032 DATA -75188:196:246,-18,24
G033 DATA 1999-7s191:265-14,24
5034 DATA 1999~7s191v26,~-14,24
5035 DATA 203,26»-11524

50346 DATA 203.1

G040 REM -- FRAME 4 -—

3041 TATA ~75258y-39176514451932265-12524
5042 DATA 1995-351915149265-11524
5043 DATA 19952697424

5044 DATA 19951

5050 REM -— FRAME § -~

S051 DATA 195,168-,18851942269-7+24
5052 [ATA 19641

50460 REM —— FRAME & ——
5061 DATA 195512941
5070 REM -~ FRAME 7 -

5071 DATA 193,51
6000 REM %k DISPLACEMENT DATA X%
4001 DATA $12,448,384,331,3385345,348,331

LISTING 13-5 Program listing for demonstrating the off-center perspec-
tive animation developed from Figs. 13-7 and 13-8; see
Project 13-5

Run the program to make sure the planes zoom out of the vanishing
point in a clear and regular fashion. Any errors in the programming will
generally show up as irregular rectangles that blink or remain fixed on the
screen.

Reverse the direction of the zooming effect by altering line 110 to
read:

110 FORN-1TO7

Change the position of the vanishing point by replacing the zero in
program line 120 with a positive or negative number, a number represent-
ing the character-space displacement from the original vanishing point.

Alter the zoom rate by changing the range of values counted in the
time delay loop in program line 125.

Fig. 13-9 shows the image of a hitchhiker drawn into the available
frames.

PROJECT 13-6

Fit the character data from Fig. 13-9 into the frame data in Listing
13-5. When the program is run, you should get the impression that you
are driving along a road passing some hitchhikers at regular intervals.
See my version in Listing 13-6.

239



10 R
18 R
20 C
30 G
100

105

110

115

120

125

130

135

4000
4005
4010
4015
4020
4025
4030
4495
4500
4505
4510
4515
4520
5000
5001
5002
5003
5004
5005
5006
50190
5011
5012
5013
5014
5015
5016
5017
5020
5021
5022
5023
5024
5025
5026
5027
5028
5030
5031
5032
5033
5034
S035
5036
5040
S041
5042

5043

EM %X FROJECT 13-6

EM HITCHIKER
LEAR 1024IDEFSTR FsF
OSUE 4000

REM XX CONTROL ROUTINE
CLS

FOR N=6 TO ¢ STEF -1

M=3AN+1 3 D=VALI(MIDSC(FeMs3 D)

PRINT @ D4+0sF(N)#
FOR T=0 TO SINEXT T
NEXT N
GOTO 110

REM *¥ STRING-FACKING SUBROUTINE

FOR N=0 TO 7

GOSUR 4500

FIN)=F

NEXT N

Fl: mnan

FOR N=1-TO0 BIREAD FIP=P+FINEXT N

RETURN

F: Hn

REAL A

IF A=0 OR A=1 THEN RETURN

IF AX1 THEN F=F+CHR$(A)IGOTO 4505

READ EIF=F+STRING$(ABS(A)sBIIGOTO 43035

REM %% CHARACTER LISTINGS

DATA 208,26,~16,24

DATA 208y265-16+24

DATA 208,26y-16+24

DATA 208+26,~16524

DATA 208s526s-16524

DATA 20851

REM ~-— FRAME 1 -—-

DATA ~11+255203,26+-22+24

DATA 194:168,-2,188-1445202,198,26:-22+24

DATA 193,176+17851875183s177914491947,1648,176s1975198+265-22524
DATA 1909177 91765-3:191y~55131+197,198,26y~-22:24
DATA 194+1305-3+19152024265-16124

DATA 195y~3,191+196,184,140,180,195,26,-16+24
DATA 1945136,143513551435140,1325193y~35y143,19451
REM ~~ FRAME 2 -~

DATA -18+255199+267-14,24

DATA 1935138,1755,1575199+195,265 250524

DATA 20351901799 -2,1912173917465180,1965195,265~-25524
DATA 203,193,130, -2:1915199:26,-22,24

DATA 203+193,140+159:1915144,1685190,191-1895148+1935265-22,24
DATA 208,26y~16+24

DATA 208:26,~16224

OATA 208,121

REM ~=~ FRAME 3 --

TATA ~14+255196v265-11,24

DATA 193517251485196+196:269-18+24

DATA 199:1425191515%95141,14251945265~14,24
DATA 199+160,1915181+193,184,180+193,269-14524
DATA 203,26y~11524

LDATA 20351

REM -- FRAME 4 -~

DATA -7+25:160+144,1945193526,-12,24

DATA 199+171+151,1762193+265-11:524

DATA 19992657224



FIGURE 13-9 Images of a hitchhiker as they fit into the image planes for
the off-center perspective animation sequence

5044
5050
S5051
5052
5060
5061
5070
5071
6000
6001

LISTING 13-6

DATA 199+1

REM ~~ FRAME 5 -~

DATA 195,1935152,194:26,-7 224
DATA 19651

REM -~ FRAME & ~~-

DATA 1955129+1

REM -~ FRAME 7 --

DATA 19351

REM %k DISPLACEMENT DATA %X
BATA G12,448+384,331,338,345,348,351

Programming for the hitchhiker sequence suggested in
Project 13-6

See if you can modify the hitchhiker program to include some interesting
background detail, a roadway, and some random delays between ap-
pearances of the figure.

241



APPENDIX A -- TRS-80 GRAPHICS SET

1

34 135 136 137 138 139 140 141 1

31 132 133 ¢

{28 129 130 1

|
L

158 159

[

173 174

55 156 157

Q

189 130 191

i
E

!l

187 188

152 153 154 i

!

67 168 169 170 171 172

E

149 150 151

!

166 1

111

i

182 183 184 185

bl

:

144 145 146 147 148

11}
{1

160 161 162 163 164 165

176 177 178 179 1

!



APPENDIX B -- TRS-80 ALPHANUMERIC CHARACTER SET

ASCIT CODE CHARACTER ASCITI CODE CHARACTER

32 (space) & 0
33 9
. n N .
34 o "
35 + &7
36 $ i il
37 o &Y i
38 i Y P

39 ‘ 71 g
40 4 P b
41 ) 73 i
42 * 74 g
43 :~ 75 K
44 y 74

45 - Fi

46 .

i i
47
48 it S e
49 1 94
i) 2 g =
51 3 893 P
52 4 {4 T
53 o a5 i

N
s -
q A

L

Pa
: L

56 B X
57 ¥ 33 Kt
58 : 2y 7
59 ; :
&0 % 57 “
, - .
&1 #3 1
sy B, o

63 7 g5, :



APPENDIX € -- TRS-80 CURSOR CONTROL CODES

8 BACKSFACE AND ERASE CURRENT CHARACTER
13 LINEFEED/CARRIAGE RETURN

14 TURN ON CURSOR

15 TURN OFF CURSOR

24 BACKSFACE CURSOR

23 ALVANCE CURBOR

26 DOWNWARD LINEFEED CURSOR

27 UFWARD LINEFEED CURBOR

28 CLEAR THE BCREEN aND HOME THE CURSOR
29 CURSOR TO BEGINNING OF CURRENT LINE
30 ERASE TO END OF CURRENT LINE

31 CLEAR TO END OF FRAME



Index |

ANIMATION:
Perspective, 219-41
Place-to-place; 173-95
Sequences, 123-44
Synchronous, 158-72

CHARACTER CODES:
Alphanumeric, 15, 23
Graphic, 11, 20, 23, 52

CHARACTER SET:
Alphanumeric, 14
Customized, 85-110
Graphic, 8

CHARACTER SPACE, 6

DATA ELEMENTS, 33-37
Listings for, 58
DISTORTION:
Astigmatic, 8
Geometric, 57
DRAWING SUBROUTINES, 57

FIELD, Graphics, 6
FIGURES:
Animated, 111
Static, 25
FRAMING, Limited-segment,
112-23

CHR$ FUNCTION, 30-33, 79-84
CONTACT SENSING, 197, 204-18 INITIALIZATION ROUTINES, 56

CONTROL ROUTINES, 57, 65-69

CURSOR, 28

KEYBOARD CONTROLS, 197-204

245






